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features of impurity-induced resonances. Real bands are
asymmetric, and the effect of asymmetry was considered
by Joynt !1997", who modeled it by a constant DOS with
different energy cutoffs at the upper and lower limits. To
make a quantitative comparison with the experimental
data on impurity resonances !see Sec. IX", we have to
understand the details of the band structure. For ex-
ample, in cuprates in-plane Cu dx2−y2 and O px,y bands
are relevant. Above we assumed that by reducing the
complicated band structure of a high-Tc !or another"
material to a single-band model, one can describe the
nonmagnetic impurity by a single parameter, the on-site
potential U0. Reality is more complex.

Even within the one-band approach one can still ex-
plore the change in the position of the impurity-induced
resonance beyond the simplest assumptions. The reso-
nance position depends on the sign of the impurity po-
tential, electron occupation numbers, and band struc-
ture. To illustrate the sensitivity to the latter we
performed an exact diagonalization for the t-t!-V model
with nearest-neighbor hopping t, next-nearest-neighbor
hopping t!, and a negative V that describes the nearest-
neighbor attraction and produces d-wave pairing. The
single-particle energy dispersion in the normal state is

!k = − 2t!cos kx + cos ky" − 4t! cos kx cos ky − " ,

!7.18"

and " is the chemical potential. The impurity was mod-
eled by an on-site potential U0. We considered three
possibilities: !i" t=1, t!=0, "=0 !the filling factor n=1.0",
with band particle-hole symmetry present, see Fig. 6; !ii"
t=1, t!=−0.2, "=−0.784 !n=0.84", with no band particle-
hole symmetry, see Fig. 7; and !iii" t=1, t!=−0.3, "
=−1.0 !n=0.85", again with band particle-hole symmetry

absent, see Fig. 8. We consider the band particle-hole
symmetry because the local particle-hole symmetry is
broken by the potential U0.

As shown in Figs. 6–8, for !i" and !ii", the band DOS
has two coherent peaks. Also for !ii", the DOS is asym-
metric with respect to the zero energy. In these two situ-
ations, a repulsive potential U0#0 leads to an impurity
state at $0!%0, manifested by a peak in the LDOS below
the Fermi energy at the impurity site. In contrast, the
peaks are above the Fermi energy at the four nearest-
neighbor sites. Correspondingly, an attractive impurity
potential U0%0 induces a state at $0!#0 at the impurity
site, but below the Fermi energy at its nearest neighbors.

For !iii", in addition to two coherent peaks, there are
also two Van Hove singularity peaks !more pronounced
on the negative-energy side and faint at the positive
side". For a repulsive impurity, the on-site resonance
peak does shift from the negative-energy side slightly
above the zero energy. This phenomenon is absent for !i"

FIG. 6. !Color online" The LDOS as a function of energy at
the impurity site !left panels" and at one of its nearest neigh-
bors !right panels" in a 2D lattice. The upper panels are for the
repulsive potential, U0=0,2 ,5 ,10, while the lower panels are
for the attractive potential, U0=0,−2,−5,−10. Note that the
resonance peak is pushed toward the Fermi energy as the po-
tential strength is increased.

FIG. 7. !Color online" Same as Fig. 6 for t=1, t!=−0.2, and
"=−0.784.

FIG. 8. !Color online" Same as Fig. 6 for t=1, t!=−0.3, and
"=−1.0.

392 Balatsky, Vekhter, and Zhu: Impurity-induced states in conventional and¼

Rev. Mod. Phys., Vol. 78, No. 2, April–June 2006

3D TIʼs surfaces

3D Dirac Materials

Graphene

kx ky

E

H = vFp · σ

3D Graphene and Weyl Semimetals

H = vFp · σ

kx ky

E



Kondo Effect

Temperature

R
/R

(0
)

ρ(T ) = ρ0 + bT 5 − a ln(T )

J. P. Franck, F. D. Manchester and Douglas L. 
Martin, Proc. Royal Society of London 1961

There is a crossover temperature, TK, below 
which the coupling between the conduction 
electrons and the dynamical magnetic impurity 
grows non-perturbatively

T<TK   Formation of a many-body singlet

TK = De−
1

JN(0)

For standard case

N(0) ∝ �α

Pseudogap Kondo problem

Withoff and Fradkin(1990), 
Ingersent (1996), ... A.V. 
Balatsky et al. RMP (2006), 
Fritz and Vojta Reports on 
Progress in Physics (2013)
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Figure 1 |Gate voltage dependent conductivity σ(Vg) and
magnetoresistance of the graphene sample. a, σ (Vg) of the graphene
sample Q6 before (black solid line) and after (red dashed line) irradiation
with 500 eV He+ at a temperature T= 17 K, and after annealing at 490K
overnight in ultra-high vacuum and exposure to ambient before cooling to
T= 300mK (blue short-dashed line). Magnetic field B=0 for all data. The
gate voltage of minimum conductivity Vg,min = −8V, 5V, 5.3 V for pristine,
irradiated and annealed sample, respectively. b, Magnetoresistance of
irradiated and annealed graphene sample for B=0–8T at various Vg.
c, Normalized detailed magnetoresistance of irradiated and annealed
graphene sample from −1.2 to 1.2 T at Vg−Vg,min ≈ −65V.

temperature-dependent resistivity in the low temperature regime

and the intermediate temperature regime (region of maximum

logarithmic slope, roughly between 10 and 100K), respectively, as

ρ(Vg,T )= ρc1(Vg)+ρK,0(Vg)

�

1−
�π
2
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�

T
TK(Vg)
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(1)

ρ(Vg,T )= ρc2(Vg)+
ρK,0(Vg)
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Figure 2 |Universal Kondo behaviour of graphene with defects.
a, Temperature-dependent resistivity ρ(Vg) of graphene sample Q6 under
a perpendicular magnetic field of 1 T, at 12 different gate voltages, with
temperature changing from 300mK to ∼290K. b, The normalized Kondo
part of the resistivity (ρ −ρc1)/ρK,0 versus T/TK(Vg), where TK(Vg) is the
Kondo temperature at respective gate voltage (see Fig. 4). The red line is
the expected universal Kondo behaviour from numerical renormalization
group calculations21.

where ρK,0 is the Kondo resistivity at zero temperature, ρc1 and ρc2
the non-temperature-dependent part of the resistivity, presumably

from impurity scattering that does not involve the spin degree of

freedom
23,24

. The numerical factors in equations (1) and (2) are

from the theory of the spin-1/2 Kondo effect
21
. As ρ(Vg,T = 0)

is known, there are three degrees of freedom in these equations at

each Vg: ρc1, ρc2 and TK; if ρK(T ) follows the universal Kondo form
then ρc1 = ρc2. We keep ρc1 and ρc2 as independent parameters to

test the internal consistency of the model. Least square fits to the

equations (1) and (2) are carried out on ρ(Vg,T ) in the low and

intermediate temperature ranges respectively (see Supplementary

Information for details).

Using the extracted parameters, we can scale the ρ(T ) curves
at different Vg and compare them to the universal Kondo

behaviour
21,25

. Figure 2b shows the normalized Kondo resistivity

(ρ − ρc1)/ρK,0 versus T/TK and the universal Kondo behaviour

from numerical renormalization group calculations (NRG; ref. 21).

From Fig. 2b one can find that: (1) all the experimental curves

collapse to a single functional form for 300mK < T <∼ 3TK and

(2) the functional formmatcheswell the universal Kondo behaviour

from NRG calculations. At higher temperature (T > 200K),

phonon contributions become important
20

and the observed

positive deviations from the NRG calculations are expected.

However, at the lowest gate voltages, the deviation is negative,

possibly due to thermal activation of carriers.

Now we discuss the gate voltage dependence of the extracted

parameters, ρc1, ρc2, ρK,0 and TK. Figure 3a shows ρc1 and ρc2
versus Vg, which peak around the actual minimum conductivity

gate voltage Vg,min ≈ 5.3V. We find that ρc1 and ρc2 are practically

536 NATURE PHYSICS | VOL 7 | JULY 2011 | www.nature.com/naturephysics
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Theoretical approach

Kondo effect and non-Fermi liquid behavior in Dirac and Weyl semimetals

Alessandro Principi
∗
and Giovanni Vignale

Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA

E. Rossi

Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA

We study the Kondo effect in three-dimensional (3D) Dirac materials and Weyl semimetals. We
find the scaling of the Kondo temperature with respect to the doping n and the coupling J between
the moment of the magnetic impurity and the carriers of the semimetal. We find that when the
temperature is much smaller than the Kondo temperature the resistivity due to the Kondo effect
scales as the n−4/3. We also study the effect of the interplay of long-range scalar disorder and Kondo
effect. In the presence of disorder-induced long-range carrier density inhomogeneities the Kondo
effect is not characterized by a Kondo temperature but by a distribution of Kondo temperatures.
We obtain the expression of such distribution and show that its features cause the appearance of
strong non-Fermi liquid behavior. Finally we compare the properties of the Kondo effect in 3D
Dirac materials and 2D Dirac systems like graphene and topological insulators.

PACS numbers: 65.80.Ck,72.20.Pa,72.80.Vp

Three-dimensional (3D) Dirac and Weyl semimet-

als (SMs) [1–4] have been recently realized experimen-

tally [5, 6], thus motivating a great deal of interest on

these materials. In Weyl and Dirac SMs [2–4, 7] the

conduction and valence bands touch at isolated points

of the Brillouin zone (BZ) named “Weyl nodes” (WNs)

in Weyl SMs and “Dirac points” (DPs) in Dirac SMs.

Around these points the electronic excitations behave as

3D massless Dirac fermions (MDFs) characterized, in the

isotropic case, by a density-independent Fermi velocity

vF. In the case of Weyl SMs the eigenstates of the bare

Hamiltonian are non-degenerate [1–4]. Weyl SMs are ex-

pected to exhibit unique properties [8–10] and to have

surface states forming “Fermi arcs” [2, 3, 11–18]. Con-

versely, in Dirac SMs the eigenstates are doubly degen-

erate, i.e. each Dirac point corresponds to two copies of

overlapping Weyl nodes with opposite chiralities [19] and

is protected by the symmetries of the crystal structure.

The linear dispersion around the nodes is expected to give

rise to anomalous transport properties in both 3D Dirac

and Weyl SMs [3, 20]. Graphene [21–23] and the surface

states of 3D topological insulators (TIs) [24, 25] consti-

tute the two-dimensional (2D) counterpart of 3D Dirac

SMs [24, 25]. While the surface states of TIs are not

spin degenerate, and are topologically protected by the

large separation in real space, the Dirac cones of graphene

are doubly degenerate and are protected by the inversion

symmetry of the crystal.

The interaction of dilute magnetic impurities with an

electron liquid is one of the most important and stud-

ied examples of strongly-correlated physics [26]. The so-

called “Kondo effect” [27] is characterized by a tempera-

ture scale TK. When the temperature (T ) is larger than

TK the electrons of the host material are only weakly scat-

tered by the impurity. For T < TK the coupling grows

non-perturbatively and leads to the formation of a many-

body singlet with the electron liquid, which completely

screens the impurity magnetic moment.

In this work we show that the unique band structure

of 3D Dirac and Weyl SMs strongly affects the nature

of the Kondo effect in these systems. We obtain (i) the

dependence of TK on the doping level of the SM and on

the strength of the antiferromagnetic electron-impurity

coupling J , (ii) the correction to the resistivity due to

the presence of magnetic impurities in the Kondo regime

(T → 0), and find that the interplay of linear dispersion

around the nodes, Kondo effect, and long-range scalar

disorder induces a non-Fermi liquid (NFL) behavior [28–

31] in these systems which can be directly probed by mea-

suring the magnetic response of these materials. Finally

we present a systematic comparison of the properties of

the Kondo effect between 3D and 2D Dirac SMs [32–45].

In Dirac and Weyl SMs the low-energy states around

one of the DPs are described by the Hamiltonian

HDM = �vF ĉ†kσ(k · τσσ� − µ)ĉkσ�

where vF is the Fermi velocity at the DP, ĉ
†
kσ (ĉkσ) cre-

ates (annihilates) an electron with momentum k and spin

(or pseudospin) σ, and µ is the chemical potential. Here-

after we set � = 1. For TIs and Weyl SMs τσσ� is the

vector formed by the 2× 2 Pauli matrices in spin space.

For graphene and 3D Dirac SMs τσσ� is the vector formed

by the 2 × 2 Pauli matrices in pseudospin space. It is

easy to see that the contribution of Fermi arcs to the

Kondo effect in Weyl SMs is negligible. Electrons on the

Fermi arcs have the spin locked to the momentum. Spin-

flip processes can occur only if electrons are scattered to

another surface, but these processes are extremely rare.

Thus the differences between Weyl and Dirac SMs, be-

sides the extra spin degeneracy gs = 2 of Dirac eigen-

states, turn out to be inessential for our purposes.

2

In the presence of diluted (identical) magnetic impu-
rities, coupled antiferromagnetically to the carriers, the
system is described by the Hamiltonian

H = HDM +Himp

where

Himp = J

�

r,R

ĉ
†
rστσσ� ĉrσ� · Sδ(r −R),

with S the magnetic moments of impurities and {R}
their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
of the operator ĉkσ (ĉ†kσ) in the real-space domain. Since
impurities interact only with the electrons of the SM,
hereafter we focus on a single magnetic impurity.

To treat the coupling of the magnetic impurity to the
free carriers we use a large-N expansion [46, 47] in which
S is expressed in terms of auxiliary creation (annihila-
tion) fermionic operators f̂†

σ (f̂σ) satisfying the constraint
nf =

�
σ f̂

†
σ f̂σ = 1, with σ = 1, . . . , Nσ. We set Nσ = 2

in the end of the calculation, which corresponds to the
case of a magnetic impurity with |S| = 1/2. In terms
of the f̂ -operators the coupling term HJ takes the form
HJ = J

�
k,k�,σ ĉ

†
kσ ĉk�σ� f̂

†
σ� f̂σ.

The large-N expansion allows a mean field treatment of
the Kondo problem [46], and is known to return accurate
and reliable results for the case of diluted magnetic impu-
rities [46–48]. We decouple the quartic interaction term
HJ via a Hubbard-Stratonovich field s ∼

�
k,σ�f̂†

σ ĉkσ�,
which thus describes the hybridization between “local-
ized” (f̂) and “itinerant” (ĉ) electronic states. The con-
strain nf = 1 is enforced with the introduction of the La-
grange multiplier µf , which plays the role of the chemical
potential of the f -electrons [see also Eq. (5)]. The result-
ing action is quadratic in the fermionic fields, and the
functional integration over f̂ and ĉ can be carried out
analytically. Approximating s and µf as static (mean-
)fields, we finally obtain the effective action

Seff=
2

πkBT

� D−µ

−D−µ
dε nF(ε) arctan

�
π

2

|s|2N (ε+ µ)

ε− µf

�

+
1

kBT

�
|s|2

J
− µf

�
, (1)

where nF(ε) = (eε/(kBT ) + 1)−1 is the Fermi-Dirac occu-
pation factor and N (ε) = V Nwε2/(2π2�3v3F) is the 3D
density-of-states (DOS) of electrons in the SM. Here Nw

the number of DPs, V is the volume of the system and
D is a cut-off corresponding to half the bandwidth of
the SM. The corresponding effective action for the 2D
case is obtained by replacing N (ε) → V Nw|ε|/(2π�2v2F).
By minimizing Seff within the saddle point approxima-
tion [47] we obtain the self-consistent equations for |s|2

FIG. 1. (Color online) Panel a) the Kondo temperature of a

3D Weyl/Dirac material in units of half the bandwidth, plot

as a function of the DOS at the bottom of the band N (D)

and for several value of the chemical potential µ. Panel b)

same as in panel a) but for a 2D system.

and µf .

� D−µ

−D−µ
dε

nF(ε)(ε− µf )N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= − 1

J
,

� D−µ

−D−µ
dε

nF(ε)|s|2N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= 1 , (2)

We identify TK as the highest temperature for which
Eqs. (2) have a non-trivial solution. Depending on the
value of µ we can have two distinct situations. For µ = 0,
i.e. when the chemical potential of the 3D SM lies exactly
at the DP, the first of Eq. (2) in the limit µf , |s|2 → 0
gives

TK = D

√
3

π

�

1− 2

N (D)J
, µ = 0 . (3)

Eq. (3) is valid only for J larger than the critical value
Jcr = 2/N (D), and TK vanishes when this condition is
not met. This threshold-like behavior is well-known to
occur [32, 33, 36, 37, 43, 49] when the DOS vanishes for
ε → 0. A similar situation is realized in 2D for which one
obtains TK = D

�
1 − 1/(N (D)J)

�
/ ln(4) [32, 33, 37, 43,

50].
When µ �= 0, in the limit kBTK � µ � D and J � Jc

we obtain

TK = D exp

�
1− 2/(JN (D))

2µ2/D2

�
, µ �= 0 . (4)

For J � Jc is not possible to get a compact analytic
expression for TK. In 2D [39] and for J � Jcr we have in-
stead TK = κ(µ)e[1−1/(N (D)J)]/|µ/D|, where κ(µ) = µ

2
/D

[κ(µ) = D] for µ > 0 [µ < 0]. Fig. 1 shows the Kondo
temperature TK of 3D and 2D SMs as a function of J
(both smaller and larger that Jc) and for different val-
ues of µ > 0, as derived from the solution of the self-
consistent Eqs. (2).
The coupling term HJ induces a renormalization of the
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ĉ
†
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grange multiplier µf , which plays the role of the chemical
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temperature TK of 3D and 2D SMs as a function of J
(both smaller and larger that Jc) and for different val-
ues of µ > 0, as derived from the solution of the self-
consistent Eqs. (2).
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where
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with S the magnetic moments of impurities and {R}
their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
of the operator ĉkσ (ĉ†kσ) in the real-space domain. Since
impurities interact only with the electrons of the SM,
hereafter we focus on a single magnetic impurity.
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The large-N expansion allows a mean field treatment
of the Kondo problem [46], and is known to return accu-
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their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
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impurities interact only with the electrons of the SM,
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strain nf = 1 is enforced with the introduction of the La-
grange multiplier µf , which plays the role of the chemical
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Eq. (3) is valid only for J larger than the critical value
Jcr = 2/N (D), and TK vanishes when this condition is
not met. This threshold-like behavior is well-known to
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ε → 0. A similar situation is realized in 2D for which one
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where
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with S the magnetic moments of impurities and {R}
their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
of the operator ĉkσ (ĉ†kσ) in the real-space domain. Since
impurities interact only with the electrons of the SM,
hereafter we focus on a single magnetic impurity.

To treat the coupling of the magnetic impurity to the
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S is expressed in terms of auxiliary creation (annihila-
tion) fermionic operators f̂†
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coupling term HJ takes the form
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The large-N expansion allows a mean field treatment
of the Kondo problem [46], and is known to return accu-
rate and reliable results for the case of diluted magnetic
impurities [46–48]. We decouple the quartic interaction
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which thus describes the hybridization between “local-
ized” (f̂) and “itinerant” (ĉ) electronic states. The con-
strain nf = 1 is enforced with the introduction of the La-
grange multiplier µf , which plays the role of the chemical
potential of the f -electrons [see also Eq. (5)]. The result-
ing action is quadratic in the fermionic fields, and the
functional integration over f̂ and ĉ can be carried out
analytically. Approximating s and µf as static (mean-
)fields, we finally obtain the effective action
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where nF(ε) = (eε/(kBT ) + 1)−1 is the Fermi-Dirac occu-
pation factor and N (ε) = V Nwε2/(2π2�3v3F) is the 3D

density-of-states (DOS) of electrons in the SM. Here Nw

the number of DPs, V is the volume of the system and
D is a cut-off corresponding to half the bandwidth of
the SM. The corresponding effective action for the 2D
case is obtained by replacing N (ε) → V Nw|ε|/(2π�2v2F).
By minimizing Seff within the saddle point approxima-
tion [47] we obtain the self-consistent equations for |s|2
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We identify TK as the highest temperature for which
Eqs. (2) have a non-trivial solution. Depending on the
value of µ we can have two distinct situations. For µ = 0,
i.e. when the chemical potential of the 3D SM lies exactly
at the DP, the first of Eq. (2) in the limit µf , |s|2 → 0
gives
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Eq. (3) is valid only for J larger than the critical value
Jcr = 2/N (D), and TK vanishes when this condition is
not met. This threshold-like behavior is well-known to
occur [32, 33, 36, 37, 43, 49] when the DOS vanishes for
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For J � Jc is not possible to get a compact analytic
expression for TK. In 2D [39] and for J � Jcr we have in-
stead TK = κ(µ)e[1−1/(N (D)J)]/|µ/D|, where κ(µ) = µ
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their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
of the operator ĉkσ (ĉ†kσ) in the real-space domain. Since
impurities interact only with the electrons of the SM,
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ĉ
†
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which thus describes the hybridization between “local-
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grange multiplier µf , which plays the role of the chemical
potential of the f -electrons [see also Eq. (5)]. The result-
ing action is quadratic in the fermionic fields, and the
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the number of DPs, V is the volume of the system and
D is a cut-off corresponding to half the bandwidth of
the SM. The corresponding effective action for the 2D
case is obtained by replacing N (ε) → V Nw|ε|/(2π�2v2F).
By minimizing Seff within the saddle point approxima-
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and µf .

� D−µ

−D−µ
dε

nF(ε)(ε− µf )N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= − 1

J
,

� D−µ

−D−µ
dε

nF(ε)|s|2N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= 1 , (2)

We identify TK as the highest temperature for which
Eqs. (2) have a non-trivial solution. Depending on the
value of µ we can have two distinct situations. For µ = 0,
i.e. when the chemical potential of the 3D SM lies exactly
at the DP, the first of Eq. (2) in the limit µf , |s|2 → 0
gives
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Eq. (3) is valid only for J larger than the critical value
Jcr = 2/N (D), and TK vanishes when this condition is
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[κ(µ) = D] for µ > 0 [µ < 0]. Fig. 1 shows the Kondo
temperature TK of 3D and 2D SMs as a function of J
(both smaller and larger that Jc) and for different val-
ues of µ > 0, as derived from the solution of the self-
consistent Eqs. (2).
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In the presence of diluted (identical) magnetic impu-
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with S the magnetic moments of impurities and {R}
their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
of the operator ĉkσ (ĉ†kσ) in the real-space domain. Since
impurities interact only with the electrons of the SM,
hereafter we focus on a single magnetic impurity.

To treat the coupling of the magnetic impurity to the
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strain nf = 1 is enforced with the introduction of the La-
grange multiplier µf , which plays the role of the chemical
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FIG. 1. (Color online) Panel a) the Kondo temperature of a

3D Weyl/Dirac material in units of half the bandwidth, plot

as a function of the DOS at the bottom of the band N (D)

and for several value of the chemical potential µ. Panel b)

same as in panel a) but for a 2D system.

be the Green’s function of the f -electrons, with

G(0,j)
σσ� (k, iωm) the Green’s function of electrons of the

SM in the clean limit, and ωn = πT (2n+1) the fermionic
Matsubara frequencies. In Eq. (5) the sum is extended to
all the wavevectors k with |k| < D/(�vF), and to all the
DPs j = 1, . . . , Nw in the Brillouin zone. Note that only

the diagonal part of G(0,j)
σσ� (k, iωm) survives the summa-

tion, and that µf plays the role of the chemical potential
of the f -electrons. The renormalized Green’s function of
the itinerant electrons is given by

G(j)
σσ�(k, iωm) = G(0,j)

σσ� (k, iωm)

+ |s|2
�

σ��

G(0,j)
σσ�� (k, iωm)G(f)

σ��σ��(iωm)G(0,j)
σ��σ�(k, iωm) .

(6)

From this expression it is immediate to find the relax-
ation time τ(ε) of the electrons in the SM. We recall
that 1/τ(ε) is proportional to the imaginary part of the
T -matrix which, as shown in Eq. (6), is proportional to

Im[G(f)
σσ (ε+iη)]. We get 1/τ(ε) = −2nimp|s|2Im[G(f)

σσ (ε+
iη)] = 4nimp/

�
πN (ε + µ)

�
. It is interesting to point out

that τ(ε) does not depend on the hybridization |s|2. In-
deed the factor |s|2, due to the interaction vertices be-
tween electrons and impurity states, is canceled by an
opposite factor ∼ 1/|s|2 due to the peak of Im[G(f)(ω)] at
the Fermi energy. Essentially, even though the electron-
impurity coupling becomes stronger by increasing s, its
effect is compensated by the reduced spectral weight of
impurity states at the Fermi energy. Using Boltzmann-
transport theory and the expression of τ(ε), we can es-
timate the zero-temperature Kondo resistivity (restoring
�)

ρK(T = 0) =
h

e2

�
32gs

3π2N2
w

�1/3 nimp

n4/3
. (7)

It is interesting to compare the scalings of ρK and of
the electrical resistivity ρ (due to non-magnetic disor-
der) with the density. We recall that in the case of scalar

short-range impurities [3] ρ is independent of n. The scal-
ing of ρK given in Eq. (7) coincides with that of ρ when
the latter is caused by charged impurities [3]. This is not
a coincidence, since τ(0) scales with the DOS, the charge

transport time is proportional to
�
N (µ)u2(0)

�−1
, and the

screened Coulomb potential u(q) of impurities scales with
the inverse of the DOS. The same happens also in the 2D
case, for which the zero-temperature Kondo resistivity
is [38] ρK = (h/e2)[4nimp/(πNw)]n−1.
So far we have considered the effect of magnetic impuri-

ties in a clean SM. However, some amount of charged im-
purities is always present in any experimental sample. In
Dirac SMs, differently from “standard” metals, charged
impurities induce [51–53] long-range carrier density in-
homogeneities [54, 55]. Such inhomogeneities have been
observed in direct imaging experiments in graphene [56–
58] and TIs [24, 59, 60]. Since the DOS of 3D Dirac SMs
scales with the density as ∼ n2/3, the long-range fluc-
tuations of the carrier density reflect on the DOS and,
as it is shown by Eq. (4), on the Kondo temperature TK.
The Kondo effect is not characterized anymore by a single
value of TK, but by a distribution of Kondo temperatures
P (TK) [44]. A similar situation was predicted to occur in
metals close to a metal-insulator transition (MIT) [28].
To study the interplay of Kondo screening and long-

range disorder we consider a Gaussian density distribu-
tion Pn(n) centered around the average doping n̄, with
standard deviation σn (proportional to the number of
dopants), i.e. Pn(n) = exp

�
− (n− n̄)2/(2σ2

n)
�
/(
√
2πσn).

This assumption for Pn(n) has been shown to be well jus-
tified for the case of 2D graphene [61–63] and we expect
it to be a reasonable model also for 3D SMs. Using this
expression for Pn(n) and the fact that µ ∼ n1/3, from
Eq. (4) we obtain

P (3D)(TK) =
3D3

8
√
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, (8)

where µ̄ = vF(6π2n̄/Nw)1/3, σµ = vF(6π2σn/Nw)1/3, and
µ ≡ µ(T ) is obtained by inverting Eq. (4).
We recall that in 2D |µ| ∼ n1/2. The major compli-

cation in this case is due to the asymmetric prefactor
κ(µ) of the exponential in the expression of TK [see dis-
cussion after Eq. (4)], which we approximate with the
half-bandwidth D. In this way we obtain a lower bound
for the distribution of Kondo temperature P (2D)(TK). In-
verting the expression for the Kondo temperature we get
µ2D(T ) ∼ D(1 − Jc/J)/ ln(kBT/D) and, in the limit of
TK → 0,

P (2D)(TK) =
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So far we have considered the effect of magnetic impuri-
ties in a clean SM. However, some amount of charged im-
purities is always present in any experimental sample. In
Dirac SMs, differently from “standard” metals, charged
impurities induce [51–53] long-range carrier density in-
homogeneities [54, 55]. Such inhomogeneities have been
observed in direct imaging experiments in graphene [56–
58] and TIs [24, 59, 60]. Since the DOS of 3D Dirac SMs
scales with the density as ∼ n2/3, the long-range fluc-
tuations of the carrier density reflect on the DOS and,
as it is shown by Eq. (4), on the Kondo temperature TK.
The Kondo effect is not characterized anymore by a single
value of TK, but by a distribution of Kondo temperatures
P (TK) [44]. A similar situation was predicted to occur in
metals close to a metal-insulator transition (MIT) [28].
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We recall that in 2D |µ| ∼ n1/2. The major compli-
cation in this case is due to the asymmetric prefactor
κ(µ) of the exponential in the expression of TK [see dis-
cussion after Eq. (4)], which we approximate with the
half-bandwidth D. In this way we obtain a lower bound
for the distribution of Kondo temperature P (2D)(TK). In-
verting the expression for the Kondo temperature we get
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Σ(k, iεn) = 4nimpJ
3S(S + 1)β−3

�

n�,n��,n���

�

k�,k��

Tr
�
G(0)

(k�, iεn�)G(0)
(k��, iεn��)

�

× 1

iεn���

1

iεn��� + iεn − iεn�

1

iεn��� + iεn − iεn��

= 4nimpJ
3S(S + 1)β−3

�

n�,n��,n���

�

k�,k��,λ�,λ��

1

iεn� − ξk�,λ�

1

iεn�� − ξk��,λ��

1 + λλ� cos(θk� − θk��)

2

× 1

iεn���

1

iεn��� + iεn − iεn�

1

iεn��� + iεn − iεn��

= 2nimpJ
3S(S + 1)β−3

�

n�,n��,n���

�

k�,k��,λ�,λ��

1

iεn� − ξk�,λ�

1

iεn�� − ξk��,λ��

× 1

iεn���

1

iεn��� + iεn − iεn�

1

iεn��� + iεn − iεn��

= −1

4
nimpJ

3S(S + 1)

�

k�,k��,λ�,λ��

1

iεn − ξk�,λ�

�
1

iεn − ξk��,λ��
+ 4

nF(ξk��,λ��)

ξk��,λ�� − ξk�,λ�

�
. (19)

The first term on the right-hand-side of Eq. (20) produces a trivial contribution to the self-energy. The second term

is instead much more interesting, since diverges when λ� = λ� and k� = k��. The contribution with λ� = λ� = − should

be discarded to regularize the self energy. Considering only the imaginary part of the self-energy, we get

Σ(k, ε+) � 2πinimpJ
3S(S + 1)ν2(ε) ln

� ε

D

�
, (20)

(here I fixed the wrong sign I was carrying on from the very beginning) which is responsible for a contribution to the

resistivity

ρ(T ) � −ρ0
π2

2

�
Jν(µ)

�3
S(S + 1) ln

�
kBT

D

�
. (21)

Note that the result is different from Mahan’s book because in our case ρ0 is the zero-temperature
resistivity at the unitary limit, while in his case is the second-order resistivity.

II. ALL-ORDER EXTENSION

From the previous discussion it is clear that, in a diagrammatic expansion of the conductivity, every electron Green’s

function appears together with a sum over its momentum variable. This is true only for a short-range impurity model,

and is a consequence of the randomization of the wavevector during the impurity scattering. Therefore, since the

components of the Green’s function proportional to the (pseudo-)spin Pauli matrices are actually proportional to

k ·σ, they all vanish upon the angular integration. The Green’s function is thus diagonal and also proportional to the

identity in spin space. Moreover, since we are dealing with the calculation of a transport property at low temperature,

we can focus only on the contribution of the states around the Fermi surface. We get a Green’s function

G(0)
(k, iεn) =

11/2

iεn − ξk
, (22)

where ξk = vFk − εF. Except from the extra factor 1/2, and the different band dispersion (which ultimately implies

just a different DOS), the Green’s function of Eq. (22) looks very similar to that o a standard 2DEG. Therefore,

the calculation of the Kondo self-energy of a doped SM proceeds in complete analogy with that of a 2DEG, given in

great detail in Refs. 1–3. At order n of perturbation theory a diagram contains n interactions, n− 1 electron Green’s

functions, and n fictitious Green’s functions. Therefore, according to Eq. (22), the n-th order contributions should

be multiplied by 2−(n−1), which amounts to replace J → J/2 and multiply by 2 the final result. We quote the final

result3

�mΣ(p, ε) = − (d− 1)π

2
nimpS(S + 1)ν(ε)

(J/N)2

[1 + (J/N)ν(εF) ln(εF/|ε|)]2 + π2(J/N)2ν2(ε)[S(S + 1) + sign(ε)]2/4
.(23)
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Same scaling as for the case of non 
magnetic long-range scatterers

AA Burkov, MD Hook, L. Balents PRB (2011)



Interplay of scalar and magnetic potential

2

In the presence of diluted (identical) magnetic impu-
rities, coupled antiferromagnetically to the carriers, the
system is described by the Hamiltonian

H = HDM +Himp

where

Himp = J

�

r,R

ĉ
†
rστσσ� ĉrσ� · Sδ(r −R),

Himp = U

�

r,R

ĉ
†
rσ ĉrσδ(r−R) + J

�

r,R

ĉ
†
rστσσ� ĉrσ� ·Sδ(r−R)

with S the magnetic moments of impurities and {R}
their positions. Here ĉrσ (ĉ†rσ) is the Fourier transform
of the operator ĉkσ (ĉ†kσ) in the real-space domain. Since
impurities interact only with the electrons of the SM,
hereafter we focus on a single magnetic impurity.

To treat the coupling of the magnetic impurity to the
free carriers we use a large-N expansion [46, 47] in which
S is expressed in terms of auxiliary creation (annihila-
tion) fermionic operators f̂†

σ (f̂σ) satisfying the constraint

nf =
�

σ

f̂
†
σ f̂σ = 1

,
with σ = 1, . . . , Nσ. We set Nσ = 2 in the end of the

calculation, which corresponds to the case of a magnetic
impurity with |S| = 1/2. In terms of the f̂ -operators the
coupling term HJ takes the form

Himp = J

�

k,k�,σ

ĉ
†
kσ ĉk�σ� f̂

†
σ� f̂σ

The large-N expansion allows a mean field treatment
of the Kondo problem [46], and is known to return accu-
rate and reliable results for the case of diluted magnetic
impurities [46–48]. We decouple the quartic interaction
term HJ via a Hubbard-Stratonovich field

s ∼
�

k,σ

�f̂†
σ ĉkσ�

which thus describes the hybridization between “local-
ized” (f̂) and “itinerant” (ĉ) electronic states. The con-
strain nf = 1 is enforced with the introduction of the La-
grange multiplier µf , which plays the role of the chemical
potential of the f -electrons [see also Eq. (5)]. The result-
ing action is quadratic in the fermionic fields, and the
functional integration over f̂ and ĉ can be carried out
analytically. Approximating s and µf as static (mean-
)fields, we finally obtain the effective action

Seff=
2

πkBT

� D−µ

−D−µ
dε nF(ε) arctan

�
π

2

|s|2N (ε+ µ)

ε− µf

�

+
1

kBT

�
|s|2

J
− µf

�
, (1)

where nF(ε) = (eε/(kBT ) + 1)−1 is the Fermi-Dirac occu-
pation factor and N (ε) = V Nwε2/(2π2�3v3F) is the 3D
density-of-states (DOS) of electrons in the SM. Here Nw

the number of DPs, V is the volume of the system and
D is a cut-off corresponding to half the bandwidth of
the SM. The corresponding effective action for the 2D
case is obtained by replacing N (ε) → V Nw|ε|/(2π�2v2F).
By minimizing Seff within the saddle point approxima-
tion [47] we obtain the self-consistent equations for |s|2
and µf .

� D−µ

−D−µ
dε

nF(ε)(ε− µf )N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= − 1

J
,

� D−µ

−D−µ
dε

nF(ε)|s|2N (ε+ µ)

(ε− µf )2 + (π|s|2N (ε+ µ)/2)2
= 1 , (2)

We identify TK as the highest temperature for which
Eqs. (2) have a non-trivial solution. Depending on the
value of µ we can have two distinct situations. For µ = 0,
i.e. when the chemical potential of the 3D SM lies exactly
at the DP, the first of Eq. (2) in the limit µf , |s|2 → 0
gives

TK = D

√
3

π

�

1− 2

N (D)J
, µ = 0 . (3)

Eq. (3) is valid only for J larger than the critical value
Jcr = 2/N (D), and TK vanishes when this condition is
not met. This threshold-like behavior is well-known to
occur [32, 33, 36, 37, 43, 49] when the DOS vanishes for
ε → 0. A similar situation is realized in 2D for which one
obtains

TK =
D

ln(4)

�
1− 1

N (D)J

�

[32, 33, 37, 43, 50].
When µ �= 0, in the limit kBTK � µ � D and J � Jc

we obtain

TK = D exp

�
1− 2/(JN (D))

2µ2/D2

�
, µ �= 0 . (4)

For J � Jc is not possible to get a compact analytic
expression for TK. In 2D [39] and for J � Jcr we have
instead

TK = κ(µ) exp

�
1− 1/(N (D)J)

|µ/D|

�

where κ(µ) = µ
2
/D [κ(µ) = D] for µ > 0 [µ < 0]. Fig. 1

shows the Kondo temperature TK of 3D and 2D SMs as
a function of J (both smaller and larger that Jc) and for
different values of µ > 0, as derived from the solution of
the self-consistent Eqs. (2).
The coupling term HJ induces a renormalization of the

Green’s function of the SM electrons. Let

G
(f)
σσ�(iωm) = δσσ�

�
iωm − µf − |s|2

�

k,j

G
(0,j)
σσ (k, iωm)

�−1

(5)

features of impurity-induced resonances. Real bands are
asymmetric, and the effect of asymmetry was considered
by Joynt !1997", who modeled it by a constant DOS with
different energy cutoffs at the upper and lower limits. To
make a quantitative comparison with the experimental
data on impurity resonances !see Sec. IX", we have to
understand the details of the band structure. For ex-
ample, in cuprates in-plane Cu dx2−y2 and O px,y bands
are relevant. Above we assumed that by reducing the
complicated band structure of a high-Tc !or another"
material to a single-band model, one can describe the
nonmagnetic impurity by a single parameter, the on-site
potential U0. Reality is more complex.

Even within the one-band approach one can still ex-
plore the change in the position of the impurity-induced
resonance beyond the simplest assumptions. The reso-
nance position depends on the sign of the impurity po-
tential, electron occupation numbers, and band struc-
ture. To illustrate the sensitivity to the latter we
performed an exact diagonalization for the t-t!-V model
with nearest-neighbor hopping t, next-nearest-neighbor
hopping t!, and a negative V that describes the nearest-
neighbor attraction and produces d-wave pairing. The
single-particle energy dispersion in the normal state is

!k = − 2t!cos kx + cos ky" − 4t! cos kx cos ky − " ,

!7.18"

and " is the chemical potential. The impurity was mod-
eled by an on-site potential U0. We considered three
possibilities: !i" t=1, t!=0, "=0 !the filling factor n=1.0",
with band particle-hole symmetry present, see Fig. 6; !ii"
t=1, t!=−0.2, "=−0.784 !n=0.84", with no band particle-
hole symmetry, see Fig. 7; and !iii" t=1, t!=−0.3, "
=−1.0 !n=0.85", again with band particle-hole symmetry

absent, see Fig. 8. We consider the band particle-hole
symmetry because the local particle-hole symmetry is
broken by the potential U0.

As shown in Figs. 6–8, for !i" and !ii", the band DOS
has two coherent peaks. Also for !ii", the DOS is asym-
metric with respect to the zero energy. In these two situ-
ations, a repulsive potential U0#0 leads to an impurity
state at $0!%0, manifested by a peak in the LDOS below
the Fermi energy at the impurity site. In contrast, the
peaks are above the Fermi energy at the four nearest-
neighbor sites. Correspondingly, an attractive impurity
potential U0%0 induces a state at $0!#0 at the impurity
site, but below the Fermi energy at its nearest neighbors.

For !iii", in addition to two coherent peaks, there are
also two Van Hove singularity peaks !more pronounced
on the negative-energy side and faint at the positive
side". For a repulsive impurity, the on-site resonance
peak does shift from the negative-energy side slightly
above the zero energy. This phenomenon is absent for !i"

FIG. 6. !Color online" The LDOS as a function of energy at
the impurity site !left panels" and at one of its nearest neigh-
bors !right panels" in a 2D lattice. The upper panels are for the
repulsive potential, U0=0,2 ,5 ,10, while the lower panels are
for the attractive potential, U0=0,−2,−5,−10. Note that the
resonance peak is pushed toward the Fermi energy as the po-
tential strength is increased.

FIG. 7. !Color online" Same as Fig. 6 for t=1, t!=−0.2, and
"=−0.784.

FIG. 8. !Color online" Same as Fig. 6 for t=1, t!=−0.3, and
"=−1.0.
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d-wave superconductors

Pan, Hudson, Lang, et al. mapped the differential tun-
neling conductance at zero bias over a large area and
found randomly distributed sites corresponding to high
LDOS, which they associated with Zn dopants. A typi-
cal tunneling spectrum at the center of such a site is
shown in Fig. 15: it exhibits a very strong peak !up to six
times greater than the normal-state conductance" at the
energy !=−1.5±0.5 meV. At the same location, the in-
tensity of the superconducting coherence peak is
strongly suppressed, indicating almost complete local
destruction of superconductivity. Both features are in
agreement with the predictions for quasiparticle scatter-
ing off of a strong nonmagnetic impurity in a d-wave
superconductor.

The high intensity of the intragap peak allowed close
inspection of the electronic structure around the Zn im-
purity. As shown in Fig. 16, the differential conductance
map at !=−1.5 meV exhibits two novel features. First,
the intensity is the strongest directly at the impurity site,
and local maxima and minima occur at the sites belong-
ing to the different sublattices with respect to the impu-
rity. Second, the intensity decays much faster along the
nodal direction than along the bond direction. These
features are at variance with the theory based on a
purely potential scattering, which predicts vanishingly
small intensity at the impurity near the unitarity limit.
The discrepancy motivated additional studies. One ap-
proach focused on the Kondo resonance as a contribu-
tion to the zero-bias peak !Polkovnikov et al., 2001;
Zhang et al., 2001; Zhu and Ting, 2001a"; as discussed in
Sec. XI. An alternative explanation considers the tun-
neling path via the BiO layer which is exposed when the

sample is cleaved !Zhu et al., 2000; Zhu and Ting, 2001b;
Martin et al., 2002"; this is outlined later.

When the Ni atom is substituted for the plane Cu in
BSCCO it is in the 3d8 state and therefore has spin S
=1. The potential part of scattering is also present, but is
much weaker than for Zn. The experimental study of
Ni-doped samples in which two resonance states were
found was reported by Hudson et al. !2001" as shown in
Fig. 17 and 18. Observation of two distinct resonance

FIG. 15. !Color online" Differential tunneling spectra taken at
the Zn-atom site !open circles" and a location far away from
the impurity !filled circles". Note that on the impurity site one
has peaks at both positive and negative bias albeit of very
different magnitude that are a reflection of the particle-hole
character of the impurity resonance. To fit the data use a
simple potential scattering model with an essentially unitary
scattering phase shift "=0.48#. The phase shift is related to an
impurity potential U0 via cot "=1/#NFU0. From Pan, Hudson,
Lang, et al., 2000.

FIG. 16. !Color online" High-spatial-resolution image of the
differential tunneling conductance at a negative tip voltage
bias eV=−1.5 meV at a 60$60 Å2 square. Also shown is
d-wave gap nodes orientation and lattice sites to indicate that
the impurity state is registered to the lattice. From Pan, Hud-
son, Lang, et al., 2000.

FIG. 17. !Color online" Tunneling DOS for tunneling on a Ni
impurity site. Note that there are always states at opposite bias
as well. The peak intensity is largest on either positive or nega-
tive bias depending on the position. To fit the data one needs
to use both U0 and J. From Hudson et al., 2001.
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The square of these coefficients gives the spatial depen-
dence of the particle and hole components of the density
of states at a given position r #Yazdani et al., 1997$.

The analysis above was carried out under the assump-
tion that the variation of the order parameter $ around
the impurity site does not change the position of the
resonance state. There are several characteristic length
scales for this variation, "$#r$. Far from the impurity r
%!0, at temperatures close to Tc, where this variation
can be determined perturbatively, "$#r$ /$0&1/pFr
#Heinrichs, 1968; Rusinov, 1968$. This power law is in-
sensitive to phase shifts of scattering on the impurity. At
low temperatures, a fully self-consistent treatment is re-
quired, which leads to "$#r$ decaying as #pFr$−3 and os-
cillating on the scale of !0$0 /&D, where the Debye tem-
perature &D sets the scale for the interaction between
electrons #Schlottmann, 1976$.

In the immediate vicinity of impurity vF /&D'r'!0
the variation of the order parameter is "$#r$ /$0
&1/ #pFr$2 in the linear-response approximation #Rusi-
nov, 1968$. In the fully self-consistent treatment at dis-
tances r'!0&D /EF, this dependence was found to ac-
quire an oscillating factor sin2 pFr #Schlottmann, 1976$.

In the Anderson model the local change $#r$ is re-
lated to the impurity T matrix #Kim and Muzikar, 1993$
and can be determined if a reliable approximation for
the T matrix exists for the given parameter range. In
principle, the method of Kim and Muzikar covers both
Kondo and mixed-valence regimes and is useful in de-
termining local structures of the order parameter.

In all cases, the suppression of the order parameter is
determined by the Fermi wavelength and does not affect
the position of the bound state.

VII. IMPURITY-INDUCED VIRTUAL BOUND STATES
IN d-WAVE SUPERCONDUCTORS

We now extend our discussion to impurity-induced
states in d-wave superconductors. Scalar #nonmagnetic$
impurities are pair breakers for higher-orbital-
momentum states, such as d-wave states. The change of
the quasiparticle momentum upon scattering disrupts
the phase assignment for particular directions of the mo-
menta in a nontrivial pairing state #Anderson, 1959; Tsu-
neto, 1962; Markowitz and Kadanoff, 1963$. This also
follows from the analysis of the self-energy in the
Abrikosov-Gorkov theory #Abrikosov et al., 1963$. An
early argument about pair-breaking effects of potential
scattering was put forth by Larkin #1965$.

As emphasized above, for pair-breaking impurities lo-
cal properties of the superconductor near the impurity
site, such as the LDOS and gap amplitude, are modified
dramatically. To capture these modifications, we use a
variation of the Yu-Shiba-Rusinov approach #Yu, 1965;
Rusinov, 1968; Shiba, 1968$; see Sec. VI. We restrict our
consideration to s-wave scatterers #l=0$ close to the uni-

tarity limit, "0&( /2, when the bound-state energy is far
from the gap edge. In contrast to s-wave superconduct-
ors, in d-wave systems the density of states below the
gap maximum $0 is nonzero and varies linearly with en-
ergy in a pure system, N#&$ /N0&& /$0. Consequently,
the overlap with the particle-hole continuum only allows
the formation of resonance, or virtual bound states, with
a finite lifetime.

We focus on pointlike defects and use the T-matrix
approach. A closely related method uses the quasiclassi-
cal approximation and the ideas of Andreev scattering
to reproduce the same results #Choi and Muzikar, 1990;
Chen, Rainer, and Sauls, 1998; Shnirman et al., 1999$.
Interesting extensions are obtained within the quasiclas-
sical formalism for extended defects: for example, the
index theorem dictates the existence of a low-energy
quasibound state in unconventional superconductors
#Adagideli et al., 1999$.

High-Tc cuprates with Zn substitution for in-plane Cu
are a well-studied example of an impurity system. Zn
ions have a full d shell and are nominally nonmagnetic.
The high stability of this configuration and the rapid
suppression of Tc by Zn doping #Ishida et al., 1991;
Hotta, 1993$ support the view that Zn ions are strong
nonmagnetic scatterers. Another point of view, that Zn
induces a localized moment on neighboring Cu sites
#Bobroff et al., 2001; Polkovnikov et al., 2001$ leads
naturally to the Kondo problem in gapless supercon-
ductors, and is discussed in Sec. XI.

Based on strong anisotropy of the electronic trans-
port, we model cuprates as 2D d-wave superconductors
and analyze virtual impurity-induced bound states,
closely following Buchholtz and Zwicknagl #1981$,
Stamp #1987$, Balatsky et al. #1995$, and Salkola et al.
#1996, 1997$. Our results are easily extended to any non-
trivial pairing state and to higher dimensions and are
relevant, for example, for heavy-fermion superconduct-
ors with impurities.

The main results of this section are as follows. #i$ A
strongly scattering scalar impurity produces a localized,
virtual, or virtually bound state #or resonance$ in a
d-wave superconductor. It is intuitively obvious that
any strong pair-breaking impurity—magnetic or
nonmagnetic—will induce such a state. Indeed, low-
lying quasiparticle states close to nodes in the energy
gap will be influenced even by a nonmagnetic impurity
potential, resulting in a virtual bound state in the unitary
limit. #ii$ This should be compared to the fact that in
s-wave superconductors magnetic impurities produce
bound states inside the energy gap #Machida and Shi-
bata, 1972$. The energy )! and decay rate )" of this
state are given by

) ' )! + i)" = − $0
(c/2

ln#8/(c$(1 +
i(
2

1
ln#8/(c$) , #7.1$

where c=cot "0. These results are valid provided
ln#8/(c$%1 and assuming band particle-hole symmetry.
The impurity breaks local particle-hole symmetry, how-
ever, since )! has a definite sign. In the unitary limit c
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Salkola et al. (1996, 1997)

The scalar part of the impurity potential 
modifies the LDOS

It modifies TK uniformly across the sample

TK is uniform across the sample 
and well defined

If the short range scalar potential is 
due to other impurities removed 
from the magnetic impurity it has 

little consequence.



Long-range disorder

Charge impurities are a common source of disorder. However they can 
often be treated as short range disorder. Things are different in most 
Dirac materials

• Linear dispersion => vanishing DOS close to Dirac points 
=>poor screening  of the disorder due to charge impurities 

The disorder is renormalized but 
retains its long-range character

• Charge impurities therefore cause strong, long-range, density 
inhomogeneities close to Dirac point

•  Linear dispersion
Strong, long-range, density inhomogeneities

Strong, long-range, inhomogeneites of the DOS



Interplay of scalar and magnetic potential:
long-range scalar potential
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superconductors: 

well screened
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In non-superconducting Dirac materials, due to vanishing DOS they induce strong, long-range, 
carrier density inhomogeneities

δn(r)
Shifts bottom of the band           shift of 
Fermi energy

J. Martin et al. Nat Phys. (2008)
Y. Zhang  et al. Nat. Phys. (2009)

2D
LDOS  ~ n

3D
LDOS  ~ n2/3

Fluctuations of n
imply fluctuations of LDOS



Effect of long-range scalar disorder
For simplicity we assume a Gaussian distribution for the density probability
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of the f -electrons. The renormalized Green’s function of
the itinerant electrons is given by

G(j)
σσ�(k, iωm) = G(0,j)
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+ |s|2
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σ��

G(0,j)
σσ�� (k, iωm)G(f)

σ��σ��(iωm)G(0,j)
σ��σ�(k, iωm) .

(6)

From this expression it is immediate to find the relax-
ation time τ(ε) of the electrons in the SM. We recall
that 1/τ(ε) is proportional to the imaginary part of the
T -matrix which, as shown in Eq. (6), is proportional to

Im[G(f)
σσ (ε+iη)]. We get 1/τ(ε) = −2nimp|s|2Im[G(f)

σσ (ε+
iη)] = 4nimp/

�
πN (ε + µ)

�
. It is interesting to point out

that τ(ε) does not depend on the hybridization |s|2. In-
deed the factor |s|2, due to the interaction vertices be-
tween electrons and impurity states, is canceled by an
opposite factor ∼ 1/|s|2 due to the peak of Im[G(f)(ω)] at
the Fermi energy. Essentially, even though the electron-
impurity coupling becomes stronger by increasing s, its
effect is compensated by the reduced spectral weight of
impurity states at the Fermi energy. Using Boltzmann-
transport theory and the expression of τ(ε), we can es-
timate the zero-temperature Kondo resistivity (restoring
�)

ρK(T = 0) =
h

e2

�
32gs

3π2N2
w

�1/3 nimp

n4/3
. (7)

It is interesting to compare the scalings of ρK and of
the electrical resistivity ρ (due to non-magnetic disor-
der) with the density. We recall that in the case of scalar
short-range impurities [3] ρ is independent of n. The scal-
ing of ρK given in Eq. (7) coincides with that of ρ when
the latter is caused by charged impurities [3]. This is not
a coincidence, since τ(0) scales with the DOS, the charge

transport time is proportional to
�
N (µ)u2(0)

�−1
, and the

screened Coulomb potential u(q) of impurities scales with
the inverse of the DOS. The same happens also in the 2D
case, for which the zero-temperature Kondo resistivity
is [38] ρK = (h/e2)[4nimp/(πNw)]n−1.

So far we have considered the effect of magnetic impuri-
ties in a clean SM. However, some amount of charged im-
purities is always present in any experimental sample. In
Dirac SMs, differently from “standard” metals, charged
impurities induce [51–53] long-range carrier density in-
homogeneities [54, 55]. Such inhomogeneities have been
observed in direct imaging experiments in graphene [56–
58] and TIs [24, 59, 60]. Since the DOS of 3D Dirac SMs
scales with the density as ∼ n2/3, the long-range fluc-
tuations of the carrier density reflect on the DOS and,
as it is shown by Eq. (4), on the Kondo temperature TK.
The Kondo effect is not characterized anymore by a single
value of TK, but by a distribution of Kondo temperatures
P (TK) [44]. A similar situation was predicted to occur in
metals close to a metal-insulator transition (MIT) [28].

To study the interplay of Kondo screening and long-
range disorder we consider a Gaussian density distribu-
tion Pn(n) centered around the average doping n̄, with
standard deviation σn (proportional to the number of
dopants), i.e. Pn(n) = exp

�
− (n− n̄)2/(2σ2

n)
�
/(
√
2πσn).

This assumption for Pn(n) has been shown to be well jus-
tified for the case of 2D graphene [61–63] and we expect
it to be a reasonable model also for 3D SMs. Using this
expression for Pn(n) and the fact that µ ∼ n1/3, from
Eq. (4) we obtain

P (3D)(TK) =
3D3

8
√
πσ3

µTK

� �
1− Jc/J

�3

ln5(kBTK/D)

�1/2

×
�
e
− (µ3−µ̄3)2

2σ6
µ + e

− (µ3+µ̄3)2

2σ6
µ

�
, (8)

where µ̄ = vF(6π2n̄/Nw)1/3, σµ = vF(6π2σn/Nw)1/3, and
µ ≡ µ(T ) is obtained by inverting Eq. (4).
We recall that in 2D |µ| ∼ n1/2. The major compli-

cation in this case is due to the asymmetric prefactor
κ(µ) of the exponential in the expression of TK [see dis-
cussion after Eq. (4)], which we approximate with the
half-bandwidth D. In this way we obtain a lower bound
for the distribution of Kondo temperature P (2D)(TK). In-
verting the expression for the Kondo temperature we get
µ2D(T ) ∼ D(1 − Jc/J)/ ln(kBT/D) and, in the limit of
TK → 0,

P (2D)(TK) =

√
2D2
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where in this expression µ ≡ µ2D(T ).
Eqs. (8) and (9) show explicitly that the distribution

of Kondo temperatures behaves, in the limit TK → 0, as

P (3D)(TK) ∝ T−1
K | ln(TK)|−5/2e−µ̄6/(2σ6

µ) ,

P (2D)(TK) ∝ T−1
K | ln(TK)|−3e−µ̄4/(2σ4

µ) . (10)

Thus, in the presence of long-range disorder there is al-
ways a large fraction of the sample whose Kondo tem-
perature is extremely small. As a consequence at any
finite temperature a significant fraction of carriers is not
“bound” to the magnetic impurities. From Eqs. (9)
and (8) we determine the number of free spins as nfr(T ) =� T
0 dTKP (TK) and in the limit of T → 0 we find

nfr(T ) ∝ | ln(T )|−3/2e−n̄2/(2σ2
n) in 3D ,

nfr(T ) ∝ | ln(T )|−2e−n̄2/(2σ2
n) in 2D . (11)

Eqs. (8)-(11) are the central results of this work. Plots
of the distribution of Kondo temperatures in 3D and 2D
SMs are shown in Fig. 2.
Note that the number of free spins diverges logarith-

mically as T → 0, and so does the magnetic suscepti-
bility χm(T ) ∝ nfr(T )/T . At odds with the magnetic
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is [38] ρK = (h/e2)[4nimp/(πNw)]n−1.

So far we have considered the effect of magnetic impuri-
ties in a clean SM. However, some amount of charged im-
purities is always present in any experimental sample. In
Dirac SMs, differently from “standard” metals, charged
impurities induce [51–53] long-range carrier density in-
homogeneities [54, 55]. Such inhomogeneities have been
observed in direct imaging experiments in graphene [56–
58] and TIs [24, 59, 60]. Since the DOS of 3D Dirac SMs
scales with the density as ∼ n2/3, the long-range fluc-
tuations of the carrier density reflect on the DOS and,
as it is shown by Eq. (4), on the Kondo temperature TK.
The Kondo effect is not characterized anymore by a single
value of TK, but by a distribution of Kondo temperatures
P (TK) [44]. A similar situation was predicted to occur in
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standard deviation σn (proportional to the number of
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This assumption for Pn(n) has been shown to be well jus-
tified for the case of 2D graphene [61–63] and we expect
it to be a reasonable model also for 3D SMs. Using this
expression for Pn(n) and the fact that µ ∼ n1/3, from
Eq. (4) we obtain

P (3D)(TK) =
3D3

8
√
πσ3

µTK

� �
1− Jc/J

�3

ln5(kBTK/D)

�1/2

×
�
e
− (µ3−µ̄3)2

2σ6
µ + e

− (µ3+µ̄3)2

2σ6
µ

�
, (8)

where µ̄ = vF(6π2n̄/Nw)1/3, σµ = vF(6π2σn/Nw)1/3, and
µ ≡ µ(T ) is obtained by inverting Eq. (4).
We recall that in 2D |µ| ∼ n1/2. The major compli-
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κ(µ) of the exponential in the expression of TK [see dis-
cussion after Eq. (4)], which we approximate with the
half-bandwidth D. In this way we obtain a lower bound
for the distribution of Kondo temperature P (2D)(TK). In-
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where in this expression µ ≡ µ2D(T ).
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of Kondo temperatures behaves, in the limit TK → 0, as
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Thus, in the presence of long-range disorder there is al-
ways a large fraction of the sample whose Kondo tem-
perature is extremely small. As a consequence at any
finite temperature a significant fraction of carriers is not
“bound” to the magnetic impurities. From Eqs. (9)
and (8) we determine the number of free spins as nfr(T ) =� T
0 dTKP (TK) and in the limit of T → 0 we find

nfr(T ) ∝ | ln(T )|−3/2e−n̄2/(2σ2
n) in 3D ,

nfr(T ) ∝ | ln(T )|−2e−n̄2/(2σ2
n) in 2D . (11)

Eqs. (8)-(11) are the central results of this work. Plots
of the distribution of Kondo temperatures in 3D and 2D
SMs are shown in Fig. 2.
Note that the number of free spins diverges logarith-

mically as T → 0, and so does the magnetic suscepti-
bility χm(T ) ∝ nfr(T )/T . At odds with the magnetic
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From this expression it is immediate to find the relax-
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tween electrons and impurity states, is canceled by an
opposite factor ∼ 1/|s|2 due to the peak of Im[G(f)(ω)] at
the Fermi energy. Essentially, even though the electron-
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effect is compensated by the reduced spectral weight of
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�
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Thus, in the presence of long-range disorder there is al-
ways a large fraction of the sample whose Kondo tem-
perature is extremely small. As a consequence at any
finite temperature a significant fraction of carriers is not
“bound” to the magnetic impurities. From Eqs. (9)
and (8) we determine the number of free spins as nfr(T ) =� T
0 dTKP (TK) and in the limit of T → 0 we find
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Eqs. (8)-(11) are the central results of this work. Plots
of the distribution of Kondo temperatures in 3D and 2D
SMs are shown in Fig. 2.
Note that the number of free spins diverges logarith-

mically as T → 0, and so does the magnetic suscepti-
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LDOS fluctuations close to MIT
Typically in materials other than Dirac materials is difficult to obtain strong, long-range 
fluctuations of the LDOS. A similar situation can be obtained close to a metal-insulator 
transition. In this case the probability distribution for the LDOS ρ is log-normal
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where p is the chemical potential, P is the inverse temper-
ature, V(r) is the random potential, and S;„, represent
the interactions among the band electrons.
The free energy of the system F=—T ln f

DEED@

xexp[ —SI can be expanded in powers of the elfective
hybridization parameter so. The Kondo temperature is
obtained by identifying the emergence of the nontrivial
(spAO) solution of the saddle-point equation 8F/Bsp =0.
This occurs when the coefficient of so vanishes. Using the
definitions of free local moment and the band electron
Green's functions, the implicit equation for Tg can be
written as

f& + oo
1ds nF(—s)p(R, s) = ——, (2)—oo J

where nF(s) = [I +exp[(s—p)/T]] ' is the Fermi func-
tion, and p(R, s) is the single-particle density of states
(DOS) of the conduction electrons.
In deriving this result, we have considered interacting

band electrons in the presence of a fixed realization of the
random potential V(r). Thus p(R, s) is a fully renormal
ized single-particle DOS of disordered interacting elec-
trons evaluated for a given realization of the randomness.
Note that p(R, e) is also a loca/ DOS, and is consequent-
ly expected to be much more sensitive to disorder than its
global counterpart ps~(s) =(I/O) fdRp(R, s). Indeed,
while ps~(s) is self-averaging [9] in the thermodynamic
limit 0 ~, the local DOS remains random since it ac-
tually measures the position-dependent electronic density,
i.e., the wave-function amplitude fluctuations, viz.
p(R, s)—i y, (R) i'.
In order to relate our results to the measurable quanti-

ties, an appropriate averaging over disorder (or equiva-
lently over the positions of the Kondo spins) has to be
performed. The simplest procedure would replace the lo-
cal DOS p(R, s) by its average value which, at least for
noninter acting electrons, would predict Tq- to be
unaffected by disorder. However, this approach is in-
correct since, for sufficiently wide probability distribu-
tions, the typical behavior is largely unrelated to the
average value which can be dominated by rare, statisti-
cally insignificant events. We will argue that this is pre-
cisely what is happening in our case, and the knowledge
of the full probability distribution is necessary to correct-
ly predict the experimentally measurable properties of the
system.
The qualitative features of the probability distribution

P(p) (p stands for the local DOS) are easily obtained
from the following simple physical picture. At weak dis-
order we expect small fluctuations, and the distribution is
peaked around p=po. In the opposite limit, in the insula-
tor, we have localized (bound) states, and the spectrum
consists of sharp, 6-function peaks. As the M IT is
crossed, these peaks broaden by an amount which mea-
sures the tunneling between what at lower energy were

)

the localized states. In the vicinity of the MIT, we thus
expect P(p) to have large weight at small values of p, and
a long, but small-amplitude tail at p large.
These qualitative considerations are very nicely born

out by detailed microscopic calculations based on a field-
theoretical nonlinear o.-model approach, which deter-
mined all the cumulants of the local DOS in a one-loop
RG calculation [10,11]. For weak disorder, the distribu-
tion was found to be a narrow Gaussian, but with long
log-normal tails which nevertheless carry only a small rel-
ative weight. For sufficiently strong disorder, i.e., sufh-
ciently close to the MIT, the ~hole distribution becomes
log-normal,

(3)1 1 1P(p) = —exp~ — ln ~e"
4n„P 4u Po

The result is valid in the region u ~ 1, where the parame-
ter u is defined by u =fl'iL(dk/k)/g(X). Here, g(X) is
the scale-dependent dimensionless conductance, l the
momentum rescaling factor, i the mean free path, and L
the Thouless length [4] (i.e., the elfective size of the sys-
tem). As the MIT is approached, u ~, and most of
the weight of P(p) shifts to small p values, near the peak
at ptyp poe ", rather than near the average value p =po,
which is not modified. Equation (3) has been obtained
for noninteracting electrons, and is valid both in the pres-
ence and in the absence of time-reversal symmetry (or-
thogonal versus unitary ensemble). When the interac-
tions are added, to one-loop order no further corrections
are found [12] for any local DOS cumulants, except for
the lowest one p, which is reduced as mentioned above.
Thus, to one-loop order, we can again use Eq. (2), by
simply replacing po with its interaction-renormalized
value. We stress, however, that all our results are the
consequences of the qualitative features of P(p) as dis-
cussed in the previous paragraph. The log-normal form is
useful for obtaining simple analytical expressions.
From the knowledge of P(p), we can now obtain the

desired probability distribution of Kondo temperatures.
In a given sample, p(R, s) will be a random function not
only of position R but also of energy e. Since the integra-
tion in Eq. (2) is carried out over energies, this could
reduce the fluctuations. However, the integral in question
gets its dominant contribution from an energy interval of
order he-Tq near the Fermi surface. The low-tem-
perature properties of the system, such as g and y, will be
dominated by precisely those Kondo sites with very low
T~. Using the fact that T~ is exponentially small in p, it
is not hard to see [13] that at low temperatures, to lead-
ing order, the energy dependence of the DOS can be ig-
nored. We thus replace p(R, s)- p(R, O) =p(R), the
DOS at the Fermi surface 4 is everywhere measured
with respect to the Fermi energy sF =p), and get
Tx(R) =sFexpj —1/p(R)J]. Furthermore, from P(Tx)
=(dp/dT~)P(p(T~) ), we find

P(T~) = (4xu ) 'i"' exp
Tg In(sF/Tg)

1114

ln [poje "In(sF/T~)] ~.
4u

(4)

I.V. Lerner, Phys. Lett. A (1988), 
B.L. Altshuler and V.N. Prigodin JETP (1987)

In this case we also get a singular distribution for TK
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where p is the chemical potential, P is the inverse temper-
ature, V(r) is the random potential, and S;„, represent
the interactions among the band electrons.
The free energy of the system F=—T ln f
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where nF(s) = [I +exp[(s—p)/T]] ' is the Fermi func-
tion, and p(R, s) is the single-particle density of states
(DOS) of the conduction electrons.
In deriving this result, we have considered interacting

band electrons in the presence of a fixed realization of the
random potential V(r). Thus p(R, s) is a fully renormal
ized single-particle DOS of disordered interacting elec-
trons evaluated for a given realization of the randomness.
Note that p(R, e) is also a loca/ DOS, and is consequent-
ly expected to be much more sensitive to disorder than its
global counterpart ps~(s) =(I/O) fdRp(R, s). Indeed,
while ps~(s) is self-averaging [9] in the thermodynamic
limit 0 ~, the local DOS remains random since it ac-
tually measures the position-dependent electronic density,
i.e., the wave-function amplitude fluctuations, viz.
p(R, s)—i y, (R) i'.
In order to relate our results to the measurable quanti-

ties, an appropriate averaging over disorder (or equiva-
lently over the positions of the Kondo spins) has to be
performed. The simplest procedure would replace the lo-
cal DOS p(R, s) by its average value which, at least for
noninter acting electrons, would predict Tq- to be
unaffected by disorder. However, this approach is in-
correct since, for sufficiently wide probability distribu-
tions, the typical behavior is largely unrelated to the
average value which can be dominated by rare, statisti-
cally insignificant events. We will argue that this is pre-
cisely what is happening in our case, and the knowledge
of the full probability distribution is necessary to correct-
ly predict the experimentally measurable properties of the
system.
The qualitative features of the probability distribution

P(p) (p stands for the local DOS) are easily obtained
from the following simple physical picture. At weak dis-
order we expect small fluctuations, and the distribution is
peaked around p=po. In the opposite limit, in the insula-
tor, we have localized (bound) states, and the spectrum
consists of sharp, 6-function peaks. As the M IT is
crossed, these peaks broaden by an amount which mea-
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the localized states. In the vicinity of the MIT, we thus
expect P(p) to have large weight at small values of p, and
a long, but small-amplitude tail at p large.
These qualitative considerations are very nicely born

out by detailed microscopic calculations based on a field-
theoretical nonlinear o.-model approach, which deter-
mined all the cumulants of the local DOS in a one-loop
RG calculation [10,11]. For weak disorder, the distribu-
tion was found to be a narrow Gaussian, but with long
log-normal tails which nevertheless carry only a small rel-
ative weight. For sufficiently strong disorder, i.e., sufh-
ciently close to the MIT, the ~hole distribution becomes
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The result is valid in the region u ~ 1, where the parame-
ter u is defined by u =fl'iL(dk/k)/g(X). Here, g(X) is
the scale-dependent dimensionless conductance, l the
momentum rescaling factor, i the mean free path, and L
the Thouless length [4] (i.e., the elfective size of the sys-
tem). As the MIT is approached, u ~, and most of
the weight of P(p) shifts to small p values, near the peak
at ptyp poe ", rather than near the average value p =po,
which is not modified. Equation (3) has been obtained
for noninteracting electrons, and is valid both in the pres-
ence and in the absence of time-reversal symmetry (or-
thogonal versus unitary ensemble). When the interac-
tions are added, to one-loop order no further corrections
are found [12] for any local DOS cumulants, except for
the lowest one p, which is reduced as mentioned above.
Thus, to one-loop order, we can again use Eq. (2), by
simply replacing po with its interaction-renormalized
value. We stress, however, that all our results are the
consequences of the qualitative features of P(p) as dis-
cussed in the previous paragraph. The log-normal form is
useful for obtaining simple analytical expressions.
From the knowledge of P(p), we can now obtain the

desired probability distribution of Kondo temperatures.
In a given sample, p(R, s) will be a random function not
only of position R but also of energy e. Since the integra-
tion in Eq. (2) is carried out over energies, this could
reduce the fluctuations. However, the integral in question
gets its dominant contribution from an energy interval of
order he-Tq near the Fermi surface. The low-tem-
perature properties of the system, such as g and y, will be
dominated by precisely those Kondo sites with very low
T~. Using the fact that T~ is exponentially small in p, it
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ing order, the energy dependence of the DOS can be ig-
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V. Dobrosavlyevic, T.R. Kirkpatrick, G. Kotliar 
PRL (1992)However:

- The conditions are difficult to achieve

- The effects are weaker than in Dirac Materials



Free carriers even for T -> 0
Considering that 

P (3D) ∝ 1

TK [ln(TK)]5/2
P (2D) ∝ 1

TK [ln(TK)]3

We see that at any is a considerable fraction of the sample for which Tk is very small 

At any T, no matter how low, there is a significant fraction, nfr, of carriers 
not bound to the impurities

We can obtain such fraction at temperature T by calculating the integral 

4

FIG. 2. (Color online) Panel a) the distribution of Kondo

temperatures of a 3D Weyl/Dirac material plot as a function

of the temperature in units of half the bandwidth and for

several value of the excess carrier density. In this plot we set

σn = 10
18

cm
−3

, vF = 10
8
cm/s, J = 0.6 Jc, Nw = 2 and a

half-bandwidth D = 0.5 eV. Panel b) same as in panel a) but

for a 2D system. Here σn = 10
12

cm
−2

, while all the other

parameters coincide with those of panel a).

µ2D(T ) ∼ D(1 − Jc/J)/ ln(kBT/D) and, in the limit of

TK → 0,

P (2D)
(TK) =

√
2D2

√
πσ2

µTK

(1− Jc/J)2

| ln3(kBTK/D)|

×
�
e
− (µ2−µ̄2)2

2σ4
µ + e

− (µ2+µ̄2)2

2σ4
µ

�
, (9)

where in this expression µ ≡ µ2D(T ).
Eqs. (8) and (9) show explicitly that the distribution

of Kondo temperatures behaves, in the limit TK → 0, as

P (3D)
(TK) ∝ T−1

K | ln(TK)|−5/2e−µ̄6/(2σ6
µ) ,

P (2D)
(TK) ∝ T−1

K | ln(TK)|−3e−µ̄4/(2σ4
µ) . (10)

Thus, in the presence of long-range disorder there is al-

ways a large fraction of the sample whose Kondo tem-

perature is extremely small. As a consequence at any

finite temperature a significant fraction of carriers is not

“bound” to the magnetic impurities. From Eqs. (9)

and (8) we determine the number of free spins as

nfr(T ) =

� T

0
dTKP (TK)

and in the limit of T → 0 we find

nfr(T ) ∝ | ln(T )|−3/2e−n̄2/(2σ2
n) in 3D ,

nfr(T ) ∝ | ln(T )|−2e−n̄2/(2σ2
n) in 2D . (11)

Eqs. (8)-(11) are the central results of this work. Plots

of the distribution of Kondo temperatures in 3D and 2D

SMs are shown in Fig. 2.

Note that the number of free spins diverges logarith-

mically as T → 0, and so does the magnetic suscepti-

bility χm(T ) ∝ nfr(T )/T . At odds with the magnetic

susceptibility of a normal Fermi liquid, χm(T ) diverges

slower than ∼ 1/T (Curie-Weiss law) and does not con-

verge to any finite value at zero temperature [64]. This

is a clear signature of the development of a NFL be-

havior. We observe that in Dirac SMs the divergence

of χm(T ) is stronger than what was found for metals

close to a MIT [28]. Note also that both the distribution

P (TK) and the number of free spins contain the factor

exp
�
− n̄2/(2σ2

n)
�
, which encodes the effects of both dop-

ing and disorder. If the system is strongly doped (i.e.
if n̄ � σn), the exponential factor strongly suppresses

the NFL behavior. The density fluctuations are indeed

too small and the Kondo effect is completely controlled

by the average Kondo temperature �TK�. In this situ-

ation, the spin susceptibility diverges only at extremely

small temperatures. On the contrary, when the density

fluctuations are strong, i.e. when n̄ � σn, the expo-

nential factor is of order of the unity, and the number

of free spins can be quite large. We find that the num-

ber of free spins is nfr ∼ 22 % at T = 30 K in a 3D

doped Dirac SM (n̄ = 1016 cm−3) with density fluctua-

tions σn = 1018 cm−3. As a comparison, we find that in a

2D SM, with average density n̄ = 2×1011 cm−2 and den-

sity fluctuations σn = 1010 cm−2, nfr ∼ 31 %. To obtain

these estimates we used a Fermi velocity vF = 108 cm/s,
J = 0.6 Jc, Nw = 2 and a bandwidth D = 0.5 eV. The

parameters have been chosen to have kBT � µ � D.

In conclusion, we have studied the Kondo effect in

3D Dirac and Weyl semimetals. In the absence of long-

range, disorder-induced, carrier density inhomogeneities

the Kondo effect is characterized by the Kondo temper-

ature TK, the crossover temperature below which Kondo

screening takes effect. When the chemical potential µ is

pinned at the Dirac point we find that no Kondo effect
can take place unless the coupling J between magnetic

impurities and conduction electrons is larger than a crit-

ical value Jc = 2/N (D), in this case TK ∝
�

1− Jc/J .
The existence of a critical coupling is analogous to the

case of graphene and, in general, to the pseudogap Kondo

problem. For µ > 0, TK is different from zero for any

value of J and depends exponentially on µ and J . We

also find that in the low-temperature regime (T → 0)

the Kondo resistivity due to the presence of magnetic

impurities scales as ρK ∝ nimp/n4/3.

In the presence of long-range disorder we find that the

Kondo effect is not characterized by a single crossover

temperature TK, but by a distribution of Kondo temper-

atures P (TK), as a result of the disorder-induced carrier

density inhomogeneities and the fact that, due to the lin-

ear dispersion, the density-of-states depends on the local

value of the carrier density. We find that, in the limit of

TK → 0, P (TK) ∝ T−1
K | ln(TK)|−5/2, and that the number

of screened magnetic impurities goes to zero in the same

limit. This in turn implies that the magnetic suscepti-

bility diverges slower than ∼ 1/T for T → 0, and that it

does not converge to any finite value at zero temperature.

As was pointed out in Ref. [28], this is the signature of a

strong NFL behavior. We find a qualitatively similar be-

havior also in 2D. In this case P (TK) ∝ T−1
K | ln(TK)|−3.

Considering that 
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TK → 0, P (TK) ∝ T−1
K | ln(TK)|−5/2, and that the number

of screened magnetic impurities goes to zero in the same

limit. This in turn implies that the magnetic suscepti-

bility diverges slower than ∼ 1/T for T → 0, and that it

does not converge to any finite value at zero temperature.
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havior also in 2D. In this case P (TK) ∝ T−1
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FIG. 2. (Color online) Panel a) the distribution of Kondo

temperatures of a 3D Weyl/Dirac material plot as a function

of the temperature in units of half the bandwidth and for

several value of the excess carrier density. In this plot we set

σn = 10
18

cm
−3

, vF = 10
8
cm/s, J = 0.6 Jc, Nw = 2 and a

half-bandwidth D = 0.5 eV. Panel b) same as in panel a) but

for a 2D system. Here σn = 10
12

cm
−2

, while all the other

parameters coincide with those of panel a).

µ2D(T ) ∼ D(1 − Jc/J)/ ln(kBT/D) and, in the limit of

TK → 0,

P (2D)
(TK) =

√
2D2

√
πσ2

µTK

(1− Jc/J)2

| ln3(kBTK/D)|

×
�
e
− (µ2−µ̄2)2

2σ4
µ + e

− (µ2+µ̄2)2

2σ4
µ

�
, (9)

where in this expression µ ≡ µ2D(T ).
Eqs. (8) and (9) show explicitly that the distribution

of Kondo temperatures behaves, in the limit TK → 0, as

P (3D)
(TK) ∝ T−1

K | ln(TK)|−5/2e−µ̄6/(2σ6
µ) ,

P (2D)
(TK) ∝ T−1

K | ln(TK)|−3e−µ̄4/(2σ4
µ) . (10)

Thus, in the presence of long-range disorder there is al-

ways a large fraction of the sample whose Kondo tem-

perature is extremely small. As a consequence at any

finite temperature a significant fraction of carriers is not
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and (8) we determine the number of free spins as
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� T

0
dTKP (TK)
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n) in 3D ,
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Eqs. (8)-(11) are the central results of this work. Plots

of the distribution of Kondo temperatures in 3D and 2D
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Note that the number of free spins diverges logarith-
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slower than ∼ 1/T (Curie-Weiss law) and does not con-
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�
− n̄2/(2σ2

n)
�
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Non-Fermi liquid behavior
Consider the magnetic susceptibility. We have

χm ∝ nfr(T )

T
And therefore we find:

3D

χm ∝ 1

T | ln(T )|3/2

2D

χm ∝ 1

T | ln(T )|2

χm alsp does not follow the Curie-Weiss law (1/T) it diverges more slowly

χm diverges for for T->0

Strong Non-Fermi-Liquid Behavior
P. Nozieres (1974)

A. Principi, G. Vignale, ER, arXiv 1410.8532
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Impurity-bound states in SCs with SOC: motivation

dependence of ! on Vg for both SLG-BLG and SLG-SLG
at d ¼ 1 nm and ! ¼ 1, where ! " e2=ð"@vFÞ. We find
that at low bias (Vg=d < 60 meV=nm) ! is larger in the
hybrid SLG-BLG heterostructures. Compared to the sym-
metric SLG-SLG structure, in the SLG-BLG structure the
density of states (DOS) in one of the layers (BLG) is higher
than in the SLG-SLG structure, and the interlayer chiral
factor Fdð#k%pÞ oscillates more rapidly. The first effect
favors the formation of the exciton condensate and there-
fore enhances ! whereas the second effect tends to sup-
press it. We can then understand the scaling with Vg of the
ratio (!$) between ! for SLG-BLG and for SLG-SLG
[inset of Fig. 4(a)] as a result of the competition of two
effects: the DOS effect dominates at low Vg and the fast
oscillation of Fdð#k%pÞ takes over at high Vg. Figure 4(b)
also shows that in the weak coupling regime (!< 1) the
interlayer coherence can be stronger in SLG-BLG than in
SLG-SLG.

The value of !, for typical values of Vg & 0:3%1, sug-
gests a mean-field critical temperature Tc & 300 K. This

value is an overestimate. Because the system is
two dimensional and the broken symmetry is U(1), Tc is
reduced to the Berezinskii-Kosterlitz-Thouless tempera-
ture (TBKT), above which we have the proliferation of
unbound vortices and antivortices of the condensate. In
addition, thermal and quantum phase fluctuations [37],
screening [16,38–46], and disorder [47,48] can consider-
ably reduce Tc. An accurate estimate of Tc is beyond the
reach of theory also due to the uncertainties about the
experimental conditions. However, the degeneracy and
chirality of the ground state are robust and independent
of the exact value of Tc. Screening and disorder are
expected to be the dominant factors in suppressing Tc

[12]. Screening in general will preserve the central nature
of the interaction and therefore will not affect the degen-
eracy and chirality of the phase coherent state. Similarly,
the presence of disorder will renormalize the order parame-
ter and therefore Tc but also does not affect our main
findings. To show this, let us denote by a tilde the
disorder-renormalized fields. For ~!?

k we find

~!?
k ¼ !?

k % ni
A

X

p

Fdð#k%pÞU1ðk% pÞU'
2ðk% pÞ~!?

p

%ði!n % ~!0
pÞ2 þ ð~!z

pÞ2 þ j~!?
p j2

;

(9)

where ni is the impurity density, U& is the disorder poten-
tial in layer &, and !n are the Matsubara frequencies.
Equation (9) shows that the chiral factor Fd appears
in the same way as in the gap equation valid in the clean
limit. This guarantees that even in the presence of disorder,
the chiral and the nonchiral solutions are degenerate,
considering that for almost all cases of interest
U&ð#k%pÞ ¼ U&ð%#k%pÞ.
Considering that we find that in SLG-BLG the mean-

field Tc value for unscreened Coulomb interaction is of the
same order as that in SLG-SLG and that screening, disor-
der, thermal, and quantum fluctuations are expected to
affect Tc similarly in the two systems, we conclude that
in realistic setups Tc for SLG-BLG should be of the same
order as that for SLG-SLG. Recent results [12] show hints
of an exciton condensate for SLG-SLG in current experi-
mental conditions. We can then conclude that the com-
bined effects of screening and disorder in SLG-SLG and
SLG-BLG heterostructures might suppress Tc but should
not prevent the experimental observation of the predicted
interlayer phase coherent states.
In conclusion, we have shown that in hybrid hetero-

structures in which the electrons in different layers have
different chirality (m in one layer and n in the other) the
interlayer phase coherent state is fourfold degenerate for
short-range interactions and twofold degenerate for long-
range central interactions when m ¼ 2n. Moreover, we
find that one of the degenerate states is always a chiral
superfluid state, a fact that implies the presence of pro-
tected midgap states in the presence of vortices in the
exciton condensate. We also find that these properties of

FIG. 3 (color online). Parts (a)–(c) show j!?
k j, !z

k, !0
k,

respectively, as a function of k [k0 " %1=ð@vFÞ], for T ¼ 0,
d ¼ 1 nm, ! ¼ 1, and Vg ¼ 0:3%1. In (b) and (c), the dashed
lines show !z

k and !0
k respectively in the noninteracting case.

(d) The solid (dashed) lines show the renormalized (noninteract-
ing) bands.

FIG. 4 (color online). ! " j!?
k jmax as a function of Vg (a) and

! (b) in the hybrid SLG-BLG structure and the symmetric SLG-
SLG structure for T ¼ 0 and d ¼ 1 nm. In (a), ! ¼ 1, and in (b),
Vg ¼ 0:2%1. The insets show the ratio (!$) between ! in SLG-

BLG and ! in SLG-SLG.
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A magnetic impurity can create states with energies within 
the gap due to the superconducting paring. These states are 
spatially bound to the impurity (Yu-Shiba-Rusinov). A chain 
of impurities can create a band of these states.

!

!
!
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Fig. 1. Topological superconductivity and Majorana fermions in Ferromagnetic atomic chains on a 
superconductor. (A) Schematic of the proposal for Majorana quasi-particle (MQP) realization and detection: 
a ferromagnetic atomic chain is placed on the surface of strongly spin-orbit (SO) coupled superconductor and 
studied using scanning tunneling microscopy (STM). (B) Band structure of a linear suspended Fe chain before 
introducing spin-orbit coupling or superconductivity. The majority spin-up (red) and minority spin-down (blue) 
d-bands labeled by azimuthal angular momentum m are split by the exchange interaction J (degeneracy each 
band is noted by the number of arrows). (C) Regimes for trivial and topological superconducting phases are 
identified for the band structure shown in (B) as a function of exchange interaction in presence of SO coupling. 
The value J for Fe chains based on DFT calculations is noted [sections 1 and 3 of (36)]. (D) Model calculation 
of the local density of states (LDOS) of the atomic chain embedded in a 2D superconductor [section 2 of (36)]. 
Left panel shows an image of the chain and the locations at which the LDOS is represented in the right panel; 
the LDOS curves are offset for clarity. In-gap (Shiba) and zero-energy (MQP) features in LDOS are noted. (E) 
Spatially resolved LDOS calculated at various energies noted at the bottom using the same model. Red (blue) 
indicates regions of the high (low) LDOS. 
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Fig. 4. Spectroscopic mapping of atomic chains and ZBPs. (A) STM spectra measured 
on the atomic chain at locations corresponding to those indicated in panels (B) and (C). For 
clarity, the spectra are offset by 100 nS. The red spectrum shows the ZBP at one end of 
the chain. The gray trace measured on the Pb substrate can be fit using thermally 

s = 1.36 meV, T = 1.45 K). (B and 
C) Zoom-in topography of the upper end (B) and lower end (C) of the chain and 
corresponding locations for spectra marked (1-7). (D and E) Spectra measured at marked 
location as in (B) and (C). (F) Spatial and energy-resolved conductance maps of another 
Fe atomic chain close to its end, which shows similar features in point spectra as in (A). 
Conductance map at zero bias (middle panel) shows increased conductance close to the 
end of the chain. Scale bar corresponds to 10 Å. We note that the localization length of the 
MQP observed here is a factor of 10 or smaller in length than the distance from the end to 
the islands that form in the middle of the chains. 

In the presence of SOC a FM chain on SC with SOC 
appears to have Majorana states at the ends

S. Nadj-Perge et al. 
Science (2014)

nate from the interaction between the magnetic atoms and
the superconducting host since they disappeared com-
pletely when a 3 T magnetic field was applied perpendic-
ularly to quench the superconductivity of the Pb film.

The multiple-peak structure has its origin in the different
angular momentum channels (l ! 0, 1, 2, etc.) in scatter-
ing, and is directly related to the magnetic moment of the
impurity. In the limit of classical spin, the binding energy
[3] for a localized bound state is

 El ! !0 cos"!#
l $ !$

l %; (1)

where !0 is the superconducting gap and !&
l are the phase

shifts for the scattering of spin up (#) and spin down ($)
quasiparticles off a magnetic impurity in the lth-angular
momentum channel. The partial waves beyond l ! 0 have
been essential to obtain an accurate description of the
magnetic impurities in a superconducting host [19,20].

Further comparison with theory would require a thorough
electronic structure calculation.

The order-parameter relaxation also provides a local
attractive potential for quasiparticles and produces bound
states in the superconducting gap at the energy

 "0 ! !0

!!!!!!!!!!!!!!!
1$ "2

p
; (2)

where " is a parameter related to the suppression of the gap
function !! and the Coulomb potential of the impurity
[18]. However, weak gap function suppression (!! ' !0)
is indicated by comparing STS measured on the bare Pb
surface and those on the isolated magnetic impurities in
Fig. 1, refuting the possibility of attributing the observed
resonances to order-parameter relaxation. The suppression
of gap function at the impurity sites is negligible in the
weak coupling limit where the ground state of the super-
conductor is still a paired state of the time-reversed single-
particle states [18]. Nevertheless, the lower coherence
peaks in the spectra on a magnetic atom indicate that the
lifetime of the quasiparticles is distinctly decreased by the
magnetic impurities.

The spectra in Fig. 1 are the convolution of the density of
states of the superconducting tip with that of the substrate.
The gap function of the Nb tip can be determined by the
BCS density of states of the Pb film together with the STS
on the bare Pb surface with the same tip. Numerical
deconvolution was performed to find the energies of the
bound states induced by singe Mn and Cr atoms, as well as
the Mn dimer discussed later. The results are summarized
in Table I.

The significance of the experiments is best demonstrated
by characterizing the local electronic properties of Mn and
Cr dimers via the intragap bound states. Dimers of both Mn
and Cr could be easily obtained by increasing the coverage
of the atoms deposited. Because of the higher concentra-
tion of magnetic impurities, the discrete bound states de-
velop into impurity bands [20–22] inside the super-
conducting gap. The formation of the impurity bands is
evident in the STS taken on the bare Pb surface far away
from the adatoms, as indicated by the arrows in Figs. 2(c)
and 4(c).

Figures 2(a) and 2(b) show two different Mn dimer
configurations. The interatomic distances and the height
difference between the neighboring Mn atoms in the topo-
graphic images imply nonequivalent adsorption sites for
the two atoms in a dimer. It has been predicted theoreti-
cally [23–25] that the atomlike bound states of the two
impurities in a dimer will hybridize and split into bonding
and antibonding states if the magnetic moments of the
impurities are parallel. The effect of interaction between
the two Mn atoms in a dimer is clearly revealed by the
dI=dV spectra [Fig. 2(c)] and the spatial mappings (Fig. 3)
of the resonances. Both l ! 0 and l ! 1 peaks split in Mn
dimer II, indicating a ferromagnetic coupling between the
two Mn atoms at 4.2 Å. In the case of a dimer at larger

FIG. 1 (color online). Single magnetic atom-induced bound
states in the superconducting gap of Pb thin films.
(a) Schematic and (b) differential conductance of the S-S tun-
neling junction. The tunneling junction was set at Vbias !
10 mV, I ! 0:4 nA. The bias modulation was 0.05 mV (rms)
at 1.991 kHz. (c)–(f) Topographic images and normalized
dI=dV spectra of single Mn and Cr atoms at 0.4 K. For a Mn
atom (c), the four peaks at energies of $2:35 meV, $1:84 meV,
#1:86 meV, and #2:47 meV correspond to the first two angular
momentum channels, respectively. For a Cr atom (e), six peaks
(f) were detected at energies of $2:44 meV, $1:92 meV,
$1:49 meV, #1:49 meV, #1:89 meV, and #2:38 meV, respec-
tively. The plus and minus signs correspond to the electronlike
and holelike excitations. Suppressing of the coherence peaks of
superconductor by the magnetic atoms is noted.
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tion of magnetic impurities, the discrete bound states de-
velop into impurity bands [20–22] inside the super-
conducting gap. The formation of the impurity bands is
evident in the STS taken on the bare Pb surface far away
from the adatoms, as indicated by the arrows in Figs. 2(c)
and 4(c).

Figures 2(a) and 2(b) show two different Mn dimer
configurations. The interatomic distances and the height
difference between the neighboring Mn atoms in the topo-
graphic images imply nonequivalent adsorption sites for
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impurities are parallel. The effect of interaction between
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dI=dV spectra [Fig. 2(c)] and the spatial mappings (Fig. 3)
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dimer II, indicating a ferromagnetic coupling between the
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$1:49 meV, #1:49 meV, #1:89 meV, and #2:38 meV, respec-
tively. The plus and minus signs correspond to the electronlike
and holelike excitations. Suppressing of the coherence peaks of
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momentum channels, respectively. For a Cr atom (e), six peaks
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Impurity-bound states in SCs with SOC: model

SOC plays a critical role to drive the “chain” of impurity states created by a 1D array of magnetic
impurities into a topological phase characterized by the presence of Majorana modes [30, 5, 32, 33].
For example, in the very recent experiment presented in Ref. [5] the magnetic impurities are placed
on the surface of lead that is known to have a very strong SOC. Due to the breaking of the inversion
symmetry induced by the presence of the surface, the effective Hamiltonian for the surface states
will contain a SOC term of the Rashba type. Only in the past few weeks the effect of such SOC term
on the spectrum of the states induced by the 1D array of impurities has started to be investigated
[24, 5, 31, 61, 32, 33, 62]. A lot more work needs to be done. In particular, our preliminary results
for the case of a single impurity [61] reveal that in the presence of SOC the presence of higher
angular momentum components of the impurity potential cannot be neglected. So far, no theory
for the spectrum created by a chain of magnetic impurities on SC with SOC, taking into account
the higher angular momentum components of the impurity potential has been developed yet. This
will be one of the outcomes of the proposed research.

3 Single impurity

θ!

"!

!"
#!

$!

%!

Figure 2: Sketch of the configuration consid-
ered for a single magnetic impurity, shown in
red, placed on a superconductor, shown in blue.

It is known that a magnetic impurity in an s-wave super-
conductor induces bound-states, i.e. states that whose en-
ergy is within the superconducting gap. These states are
commonly referred as Yu-Shiba-Rusinov (YSR) states [2–
4]. In the presence of SOC the spectrum of the YSR states
is expected to be modified for two reasons: (i) the SOC
modifies the spectrum of the quasiparticle (qp) states of
the host system; (ii) the presence of SOC can change the
relative strength of the superconducting pairing channels.

This part of the proposed research aims to find the
effect of SOC on the YSR spectrum, and on the proper-
ties, for example fermion parity, of the YSR states, in the
limit in which the magnetic moment S of the impurity
can be treated as a classical object. As stated in Sec. 1
this limit is directly relevant to many experimental condi-
tions and its understanding is necessary to develop more
sophisticated treatments, see Sec. 4.

3.1 Formalism

The Hamiltonian H for the system can be written as the sum of the Hamiltonian for the clean
superconductor HSC and the Hamiltonian for the magnetic impurity Himp: H = HSC +Himp. The
general expression for HSC is:

HSC =
�

p

ψ†
p [τz ⊗ (ξp + αlp · σ) + τx ⊗ (∆0(p)σ0 +∆1 · σ)]ψp (1)

where ψp is the Nambu spinor (cp↑, cp↓, c
†
−p↓,−c

†
−p↑)

T , with c
†
pσ (cpσ) the creation (annihilation)

operator for an electron with momentum p = (px, py) and spin σ, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p

2
/2m− µ, with m the effective mass and µ the chemical

potential, is the energy of a quasiparticle with momentum p in the absence of SOC, αlp · σ is the
SOC term, α being the strength of the SOC, ∆0 (∆1) is the singlet (triplet) component of the
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superconducting pairing. The general expression for Himp is:

Himp = Û(|r−R|)τz ⊗ σ0 + Ĵ(|r−R|)τ0 ⊗ S · σ, (2)

where R is the position of the impurity, Û(|r−R|) and Ĵ(|r−R|) are the scalar and magnetic part
respectively of the potential created by the impurity, and S = S(sin θ cosφ, sin θ sinφ, cos θ) is the
magnetic moment of the impurity with θ, φ the spherical coordinates angles, see Fig. 2. Without
loss of generality, we set R = 0. Using the density of states (per spin) νF = m/π, and the Fermi
velocity vF = pF /m, we can define the dimensionless potentials U ≡ ÛπνF , J ≡ ĴπνF |S|, and the
dimensionless Rashba SOC α̃ ≡ α/vF which are used in the remainder.

Starting from the expression of the Hamiltonian H = HSC+Himp we can calculate the T-matrix
and then obtain the spectrum of the YSR states by finding the poles of the T-matrix [2–4]. This
approach, however, is not easily generalized to the case of multiple impurities, and, in particular, to
the case of a chain. We therefore follow a different approach [28] that relies on the direct solution of
the Schrödinger equation. For our problem the Schrödinger equation is: (HSC+Himp)ψ(r) = Eψ(r).
Let’s introduce the Green function for the clean superconductor GSC ≡ [E − HSC ]−1. Then the
Schrödinger equation can be rewritten as [1−G(E)Himp]ψ = 0; this equation in momentum space
takes the form

ψ(p)−GSC(E,p)

�

p�
Himp(|p− p�|)ψ(p�) = 0. (3)

The explicit expression of GSC(E,p) is obtained via a unitary transformation to the so-called helical
bands [63]. Equation (3) admits non-trivial solution for values of E such that

det[1−GSC(E,p)Himp(|p− p�)] = 0. (4)

The solution of Eq. (4) provides the spectrum {E} of the YSR states, and by replacing the values
of E obtained from Eq. (4) in Eq. (3) the spinors of the YSR states are obtained.

To understand the effect of SOC it is convenient to express the quantities that depend on the
momentum p in terms of their angular momentum components: ψ(p) =

�
l ψl(p)eilθ, G(E,p) =�

l Gl(E, p)eilθ, U(p) =
�

l Ul(p)eilθ, and J(p) =
�

l Jl(p)e
ilθ. Considering that the dominant

contributions arise from scattering events for which |p| = |p�| = pF ≡
√
2m∗µ, pF being the Fermi

momentum, we can assume that Himp(|p − p�|) to very good approximation will only depend on
the angle difference θ − θ�, with θ ≡ arctan(py/px) (θ� ≡ arctan(p�y/p

�
x)). We therefore can write

H
l
imp =

�
Ulσ0 + Jl

S·σ
|S| 0

0 −U−lσ0 + J−l
S·σ
|S|

�
. (5)

with {Ul}, {Jl} simply constants. In terms of angular momentum components Eq. (3) then takes
the form: �

l

ψl(p)e
ilθ − 2π

�

n,l�

Gn(E, p)ei(n+l�)θ
H

l�
imp ×

�
dp

�

(2π)2
p
�ψl�(p

�) = 0 (6)

Equation (6) can be further simplified by integrating over p and introducing the average quantities
f̄(p) ≡

� dp
(2π)2 pf(p) to finally get:

ψl −
�

n

Gn(E)H l−n
impψl−n = 0. (7)

Equation (7) forms the basis for the study of the effect of SOC on the YSR states induced by an
isolated impurity in a superconductor.
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Impurity-bound states in SCs with SOC: results

s-wave superconductor
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This part of the proposed research aims to find the
effect of SOC on the YSR spectrum, and on the proper-
ties, for example fermion parity, of the YSR states, in the
limit in which the magnetic moment S of the impurity
can be treated as a classical object. As stated in Sec. 1
this limit is directly relevant to many experimental condi-
tions and its understanding is necessary to develop more
sophisticated treatments, see Sec. 4.

3.1 Formalism

The Hamiltonian H for the system can be written as the sum of the Hamiltonian for the clean
superconductor HSC and the Hamiltonian for the magnetic impurity Himp: H = HSC +Himp. The
general expression for HSC is:

HSC =
�

p

ψ†
p [τz ⊗ (ξp + αlp · σ) + τx ⊗ (∆0(p)σ0 +∆1 · σ)]ψp (1)

where ψp is the Nambu spinor (cp↑, cp↓, c
†
−p↓,−c

†
−p↑)

T , with c
†
pσ (cpσ) the creation (annihilation)

operator for an electron with momentum p = (px, py) and spin σ, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p

2
/2m− µ, with m the effective mass and µ the chemical

potential, is the energy of a quasiparticle with momentum p in the absence of SOC, αlp · σ is the
SOC term, α being the strength of the SOC, ∆0 (∆1) is the singlet (triplet) component of the
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momentum p = (px, py) and spin σ, and

HSC(p) = τz ⊗ (ξp+αlp ·σ)+ τx⊗ (∆s+
∆t

pF
lp ·σ). (1)

HSC describes effectively two-dimensional superconducting
thin films, and surfaces of 3D superconductors with strong
Rashba SOC. In (1) � = 1, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p

2
/2m−�F , with m

the effective mass of the fermionic quasiparticles and �F the
chemical potential, pF =

√
2m�F is the Fermi momentum,

lp = (py,−px)[54], α is the strength of the Rashba SOC,
and ∆s, ∆t are the singlet, triplet, pairing order parameters
respectively, that, without loss of generality, we take to be
real.

In the presence of impurities the term Himp =
�

j V̂j(|r−
Rj |) =

�
j Û(|r−Rj |)τz⊗σ0+ Ĵ(|r−Rj |)τ0⊗Sj ·σ must

be added to HSC. Ris are the positions of the impurities, and
Û and Ĵ are the charge and magnetic potential respectively.
Without loss of generality, we set R = 0 for single impurity
and Ri = xi for dimer. Using the density of states (per spin)
νF = m/π, and the Fermi velocity vF = pF /m, we can de-
fine the dimensionless potentials U ≡ ÛπνF , J ≡ ĴπνF |S|,
and the dimensionless Rashba SOC α̃ ≡ α/vF which are used
in the remainder of the paper.

To find the spectrum {E} of the impurity-induced states we
have to solve the Schrödinger equation (HSC+Himp)ψ(r) =
Eψ(r). Let G = [E−HSC]−1, then the Schrödinger equation
can be rewritten as [1−G(E, r)Himp]ψ(r) = 0 [18]. In par-
ticular, the spectrum of the impurity bound states is obtained
by finding the values of E such that det[1−G(E, r)Himp] =
0. In momentum space the Schrödinger equation takes the
form:

ψ(p)=
�

j

G(E,p)

�
dp�

e
ixj(p cos θ−p�cos θ)

V̂j(|p−p�
|)ψ(p�).

(2)
G can be written as the sum (G(E,p) = [G+(E,p) +
G

−(E,p)]/2) of the two spin helical bands [46]

G
±(E,p) =

�
E + ξ± ∆±
∆± E − ξ±

�
⊗σ0 ± sin θσx ∓ cos θσy

E2 − ξ2± −∆2
±

.

Here p = |p|, ξ± = p
2
/2m ± αp − �F and ∆± = ∆s ±

∆tp/pF . Let us define ψj,θ =
� dp

(2π)2 p e
−ixjp cos θψ(p) and

Gij(E, θ) =
� dp

(2π)2 2πpe
−i(xi−xj)p cos θ

G(E,p). Assum-
ing that close to the Fermi momentum V̂ (p) depends only
very weakly on p and integrating Eq. (2) with

�
e
−ixi cos θpdp

we get:

ψi(θ) =
�

j

Ĝij(E, θ)
1

2π

�
dθ�V̂j(θ − θ�)ψj(θ) (3)

Rewriting all the functions, f(θ), of angle that enter Eq. (3)
in terms of their angular momentum components fl: f(θ) =�

l fle
ilθ we find:

ψi,l −
�

j,n

G
ij
n (E)V̂ l−n

j ψj,l−n = 0. (4)

where

V̂
l
j =

�
Ulσ0 + Jl

Sj·σ
|Sj| 0

0 −U−lσ0 + J−l
Sj·σ
|Sj|

�
. (5)

Since Himp is Hermitian and even with respect to θ − θ�,
we require Ul(= U−l) and Jl(= J−l) to be real. The lo-
cal part Gii

n = (G+
n (E) + G

−
n (E))/2 = 0 for |n| ≥ 2.

The details of calculation are presented in the supplementary
information.[55] Henceforth, we assume that the impurity po-
tential has only large l = 0, 1 components and neglect higher
angular momentum channels.

First we will consider a single impurity on two different
phases of non-centro-symmetric SC [56–58]: s-wave (|∆s| �
|∆t|) and p-wave (|∆s| � |∆t|) pairing dominating regimes.
As we show below, impurity-bound-state spectra are qualita-
tively different in the two regimes.

s-wave dominating regime. For a SC for which s-wave sin-
glet pairing is dominant, ∆s � ∆t, each non-zero angu-
lar momentum component of the magnetic impurity potential,
Jn, creates a bound state [13]. In the presence of Rashba SOC,
for the case when the magnetic moment of the impurity is per-
pendicular to the 2D surface, S = ẑ, we find that the energy
levels of the impurity-induced bound states are given by the
following expressions:

|El=0,1|

∆s
=

γ2−J
2
0J

2
1±γ

3
2

�
(J2

0−J
2
1 )

2+(γ−1)(J0−J1)4

γ2(1+(J0−J1)2)+2γJ0J1 + J
2
0J

2
1

(6)
|El=−1|

∆s
=

1− J
2
1

1 + J
2
1

(7)

where γ = 1 + α̃2. For zero Rashba SOC H
1
imp and H

−1
imp

have the same structure and therefore the l = ±1 levels are
degenerate. However, as soon as we turn on the SOC, the
levels corresponding to different ls mix. This mixing is a new
qualitative feature of superconductors with SOC. We find that
the effect of the SOC is qualitatively different depending on
the orientation of S. For S perpendicular to the surface the
SOC causes mixing of the l = 0 and l = 1 states.

This hybridization causes a splitting of the l = 1,−1 states:
as α̃ grows the energy of both hybridized particle-like (hole-
like) states increases (decreases) whereas the energy of the
l = −1 state remains unchanged, as shown in Fig. 1 (a). For
the case in which S is in the plane of the 2D SC all the three
states, l = 0,−1, 1, hybridize, as shown in Fig. 1 (b). The l =
1,−1 states split and their energy grows (decreases) with α̃ if
they are particle-like (hole-like). The energy of the hybridized
l ≈ 0 states on the other hand in this case follows an oppo-
site trend and decreases (increases) with α̃ for the particle-like
(hole-like). This behavior can be qualitatively understood by
considering the perturbative regime α̃ � min{1, |J0 − J1|},
for which we can obtain analytic expressions for the energies
of the YSR states to lowest order in α̃ for an arbitrary direction
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FIG. 1. (a, b) Bound state spectrum for a magnetic impurity in an
s-wave SC as a function of Rashba SOC at J0 = 3/4, J±1 = 1/2,
U0 = U±1 = 0, S = ẑ (a) or x̂ (b). (c, d) Bound state spectrum as
a function of J1 at J0 = 3/4, α̃ = 1/2, U0 ∈ {0, 1}, U±1 = 0,
S = ẑ (c) or x̂ (d).

of S = (cosφ sin θ, sinφ sin θ, cos θ) [59]:

|El=0|
∆s

≈ 1−J2
0

1+J2
0

+
4α̃2J2

0J1(J0 cos
2 θ − J1)

(1 + J2
0 )

2(J2
0 − J2

1 )
(8)

|El=±1|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J2

1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )

2(J2
0 − J2

1 )

where F =
�
(J0 − J1)2 cos2 θ + J2

1 sin
4 θ. The expressions

above are valid as long as the hybridized states are not degen-
erate. To describe this situation we solved Eq. (4) numeri-
cally. Fig. 2 (a) shows an example of the evolution of the
spectrum of the YSR states with θ. We see that, for a given
set of values of J0, J1, α̃, there can be a value of θ for which
the energy levels of the different YSR states cross. In this sit-
uation, by varying the orientation of S, the fermion parity of
the impurity-bound ground state can be modified. This fea-
ture is useful to tune between topological and non-topological
regimes in the YSR-based Majorana proposals [18].

We now investigate the effect of the interplay between the
scalar and the magnetic potential. Without SOC, the effect of
Un �= 0 is to merely shift the energy of the l = n level [10].
However, the presence of the SOC causes the scalar potential
to qualitatively affect the spectrum of the YSR states created
by the magnetic potential (J0, J1 �= 0). In the perturbative
regime α � 1, for S � ẑ, we find that when U0 �= 0 the ener-
gies of the l = 0, 1 states are given by the following analytical
expressions:

|El=0|
∆s

≈ 1−J2
0+U2

0�
(1−J2

0+U2
0 )

2+4J2
0

(9)

+
4α̃2J2

0J1((1−J0J1)(1+J2
0+U2

0 )+2J0J1U2
0 )

((1−J0J1)(J0+J1)+J1U2
0 )((1−J2

0+U2
0 )

2+4J2
0 )

3
2

|El=1|
∆s

≈ 1−J2
1

1+J2
1

+
4α̃2J2

1 (J0(1−J0J1)+J1U2
0 )

(1+J2
1 )

2((1−J0J1)(J0+J1)+J1U2
0 )

(10)

whereas the energy of the l = −1 states remains unchanged
(see Eq. (7)). From these expressions we can see that the SOC
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FIG. 2. Bound state spectrum for magnetic impurity in a s-wave(a)
and p-wave(b) SC as a function of the direction of magnetic moment
at J0 = 1, J±1 = 1/3.

correction to the energy of the l = 1 level depends in a non-
trivial way on U0. Analogously, we found that the energy of
the l = 0 level qualitatively depends on U1. To go beyond the
perturbative regime we solved Eq. (4) with U0 �= 0 numeri-
cally. Fig. 1 (c) and (d) show the evolution of the YSR-states
spectrum as a function of J1 when both U0 and α̃ are not zero.
This figure clearly shows the qualitative effect that U0 has on
the YSR-spectrum in the presence of SOC: for S � ẑ the in-
terplay of SOC and scalar potential creates avoided crossings
between the particle-like l = 0 and the hole-like l = 1 lev-
els. For in-plane direction S there is an additional avoided
crossing between particle-like and hole-like l = 1 levels.

p-wave dominating regime. Superconductors with domi-
nantly p-wave pairing, ∆t > ∆s, have properties which are
more similar to unconventional superconductors. Triplet su-
perconductivity can be due to effective electron-electron in-
teractions (such as the ones originating from spin fluctuations)
that favor a Cooper instability in the p-wave channel, or SOC
itself, in which case ∆t depends on the strength of the SOC.
Because we are exclusively interested on the effect of the par-
ity of the order parameter on the YSR states in the presence
of SOC, we assume ∆t to be fixed and do not obtain it self-
consistently.

One can show that even in the presence of time-reversal
symmetry, scattering off non-magnetic impurities alone leads
to the formation of subgap bound states in the p-wave dom-
inated regime [51–53]. The presence of SOC modifies the
spectrum. In the limit of no magnetic potential, for α̃ � 1,
we find the following analytical expressions for the energy
levels of the bound states:

|El=0|
∆t

≈ U0U1 + 1�
(U2

0 + 1) (U2
1 + 1)

(11)

+
α̃2(U0 − U1)2((U0 + U1)2 + 1− U2

0U
2
1 )

2(1 + U0U1)((1 + U2
0 )(1 + U2

1 ))
3/2

|El=1|
∆t

≈ 1 + α̃2U2
1 /2�

1 + U2
1

(12)

For each angular momentum component of the scalar poten-
tial there is a charge impurity bound state. We see that there
can be a value of U1 for which the these energy levels cross.
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momentum p = (px, py) and spin σ, and

HSC(p) = τz ⊗ (ξp+αlp ·σ)+ τx⊗ (∆s+
∆t

pF
lp ·σ). (1)

HSC describes effectively two-dimensional superconducting
thin films, and surfaces of 3D superconductors with strong
Rashba SOC. In (1) � = 1, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p

2
/2m−�F , with m

the effective mass of the fermionic quasiparticles and �F the
chemical potential, pF =

√
2m�F is the Fermi momentum,

lp = (py,−px)[54], α is the strength of the Rashba SOC,
and ∆s, ∆t are the singlet, triplet, pairing order parameters
respectively, that, without loss of generality, we take to be
real.

In the presence of impurities the term Himp =
�

j V̂j(|r−
Rj |) =

�
j Û(|r−Rj |)τz⊗σ0+ Ĵ(|r−Rj |)τ0⊗Sj ·σ must

be added to HSC. Ris are the positions of the impurities, and
Û and Ĵ are the charge and magnetic potential respectively.
Without loss of generality, we set R = 0 for single impurity
and Ri = xi for dimer. Using the density of states (per spin)
νF = m/π, and the Fermi velocity vF = pF /m, we can de-
fine the dimensionless potentials U ≡ ÛπνF , J ≡ ĴπνF |S|,
and the dimensionless Rashba SOC α̃ ≡ α/vF which are used
in the remainder of the paper.

To find the spectrum {E} of the impurity-induced states we
have to solve the Schrödinger equation (HSC+Himp)ψ(r) =
Eψ(r). Let G = [E−HSC]−1, then the Schrödinger equation
can be rewritten as [1−G(E, r)Himp]ψ(r) = 0 [18]. In par-
ticular, the spectrum of the impurity bound states is obtained
by finding the values of E such that det[1−G(E, r)Himp] =
0. In momentum space the Schrödinger equation takes the
form:

ψ(p)=
�

j

G(E,p)

�
dp�

e
ixj(p cos θ−p�cos θ)

V̂j(|p−p�
|)ψ(p�).

(2)
G can be written as the sum (G(E,p) = [G+(E,p) +
G

−(E,p)]/2) of the two spin helical bands [46]

G
±(E,p) =

�
E + ξ± ∆±
∆± E − ξ±

�
⊗σ0 ± sin θσx ∓ cos θσy

E2 − ξ2± −∆2
±

.

Here p = |p|, ξ± = p
2
/2m ± αp − �F and ∆± = ∆s ±

∆tp/pF . Let us define ψj,θ =
� dp

(2π)2 p e
−ixjp cos θψ(p) and

Gij(E, θ) =
� dp

(2π)2 2πpe
−i(xi−xj)p cos θ

G(E,p). Assum-
ing that close to the Fermi momentum V̂ (p) depends only
very weakly on p and integrating Eq. (2) with

�
e
−ixi cos θpdp

we get:

ψi(θ) =
�

j

Ĝij(E, θ)
1

2π

�
dθ�V̂j(θ − θ�)ψj(θ) (3)

Rewriting all the functions, f(θ), of angle that enter Eq. (3)
in terms of their angular momentum components fl: f(θ) =�

l fle
ilθ we find:

ψi,l −
�

j,n

G
ij
n (E)V̂ l−n

j ψj,l−n = 0. (4)

where

V̂
l
j =

�
Ulσ0 + Jl

Sj·σ
|Sj| 0

0 −U−lσ0 + J−l
Sj·σ
|Sj|

�
. (5)

Since Himp is Hermitian and even with respect to θ − θ�,
we require Ul(= U−l) and Jl(= J−l) to be real. The lo-
cal part Gii

n = (G+
n (E) + G

−
n (E))/2 = 0 for |n| ≥ 2.

The details of calculation are presented in the supplementary
information.[55] Henceforth, we assume that the impurity po-
tential has only large l = 0, 1 components and neglect higher
angular momentum channels.

First we will consider a single impurity on two different
phases of non-centro-symmetric SC [56–58]: s-wave (|∆s| �
|∆t|) and p-wave (|∆s| � |∆t|) pairing dominating regimes.
As we show below, impurity-bound-state spectra are qualita-
tively different in the two regimes.

s-wave dominating regime. For a SC for which s-wave sin-
glet pairing is dominant, ∆s � ∆t, each non-zero angu-
lar momentum component of the magnetic impurity potential,
Jn, creates a bound state [13]. In the presence of Rashba SOC,
for the case when the magnetic moment of the impurity is per-
pendicular to the 2D surface, S = ẑ, we find that the energy
levels of the impurity-induced bound states are given by the
following expressions:

|El=0,1|

∆s
=

γ2−J
2
0J

2
1±γ

3
2

�
(J2

0−J
2
1 )

2+(γ−1)(J0−J1)4

γ2(1+(J0−J1)2)+2γJ0J1 + J
2
0J

2
1

(6)
|El=−1|

∆s
=

1− J
2
1

1 + J
2
1

(7)

where γ = 1 + α̃2. For zero Rashba SOC H
1
imp and H

−1
imp

have the same structure and therefore the l = ±1 levels are
degenerate. However, as soon as we turn on the SOC, the
levels corresponding to different ls mix. This mixing is a new
qualitative feature of superconductors with SOC. We find that
the effect of the SOC is qualitatively different depending on
the orientation of S. For S perpendicular to the surface the
SOC causes mixing of the l = 0 and l = 1 states.

This hybridization causes a splitting of the l = 1,−1 states:
as α̃ grows the energy of both hybridized particle-like (hole-
like) states increases (decreases) whereas the energy of the
l = −1 state remains unchanged, as shown in Fig. 1 (a). For
the case in which S is in the plane of the 2D SC all the three
states, l = 0,−1, 1, hybridize, as shown in Fig. 1 (b). The l =
1,−1 states split and their energy grows (decreases) with α̃ if
they are particle-like (hole-like). The energy of the hybridized
l ≈ 0 states on the other hand in this case follows an oppo-
site trend and decreases (increases) with α̃ for the particle-like
(hole-like). This behavior can be qualitatively understood by
considering the perturbative regime α̃ � min{1, |J0 − J1|},
for which we can obtain analytic expressions for the energies
of the YSR states to lowest order in α̃ for an arbitrary direction

2

momentum p = (px, py) and spin σ, and

HSC(p) = τz ⊗ (ξp+αlp ·σ)+ τx⊗ (∆s+
∆t

pF
lp ·σ). (1)

HSC describes effectively two-dimensional superconducting
thin films, and surfaces of 3D superconductors with strong
Rashba SOC. In (1) � = 1, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p

2
/2m−�F , with m

the effective mass of the fermionic quasiparticles and �F the
chemical potential, pF =

√
2m�F is the Fermi momentum,

lp = (py,−px)[54], α is the strength of the Rashba SOC,
and ∆s, ∆t are the singlet, triplet, pairing order parameters
respectively, that, without loss of generality, we take to be
real.

In the presence of impurities the term Himp =
�

j V̂j(|r−
Rj |) =

�
j Û(|r−Rj |)τz⊗σ0+ Ĵ(|r−Rj |)τ0⊗Sj ·σ must

be added to HSC. Ris are the positions of the impurities, and
Û and Ĵ are the charge and magnetic potential respectively.
Without loss of generality, we set R = 0 for single impurity
and Ri = xi for dimer. Using the density of states (per spin)
νF = m/π, and the Fermi velocity vF = pF /m, we can de-
fine the dimensionless potentials U ≡ ÛπνF , J ≡ ĴπνF |S|,
and the dimensionless Rashba SOC α̃ ≡ α/vF which are used
in the remainder of the paper.

To find the spectrum {E} of the impurity-induced states we
have to solve the Schrödinger equation (HSC+Himp)ψ(r) =
Eψ(r). Let G = [E−HSC]−1, then the Schrödinger equation
can be rewritten as [1−G(E, r)Himp]ψ(r) = 0 [18]. In par-
ticular, the spectrum of the impurity bound states is obtained
by finding the values of E such that det[1−G(E, r)Himp] =
0. In momentum space the Schrödinger equation takes the
form:

ψ(p)=
�

j

G(E,p)

�
dp�

e
ixj(p cos θ−p�cos θ)

V̂j(|p−p�
|)ψ(p�).

(2)
G can be written as the sum (G(E,p) = [G+(E,p) +
G

−(E,p)]/2) of the two spin helical bands [46]

G
±(E,p) =

�
E + ξ± ∆±
∆± E − ξ±

�
⊗σ0 ± sin θσx ∓ cos θσy

E2 − ξ2± −∆2
±

.

Here p = |p|, ξ± = p
2
/2m ± αp − �F and ∆± = ∆s ±

∆tp/pF . Let us define ψj,θ =
� dp

(2π)2 p e
−ixjp cos θψ(p) and

Gij(E, θ) =
� dp

(2π)2 2πpe
−i(xi−xj)p cos θ

G(E,p). Assum-
ing that close to the Fermi momentum V̂ (p) depends only
very weakly on p and integrating Eq. (2) with

�
e
−ixi cos θpdp

we get:

ψi(θ) =
�

j

Ĝij(E, θ)
1

2π

�
dθ�V̂j(θ − θ�)ψj(θ) (3)

Rewriting all the functions, f(θ), of angle that enter Eq. (3)
in terms of their angular momentum components fl: f(θ) =�

l fle
ilθ we find:

ψi,l −
�

j,n

G
ij
n (E)V̂ l−n

j ψj,l−n = 0. (4)

where

V̂
l
j =

�
Ulσ0 + Jl

Sj·σ
|Sj| 0

0 −U−lσ0 + J−l
Sj·σ
|Sj|

�
. (5)

Since Himp is Hermitian and even with respect to θ − θ�,
we require Ul(= U−l) and Jl(= J−l) to be real. The lo-
cal part Gii

n = (G+
n (E) + G

−
n (E))/2 = 0 for |n| ≥ 2.

The details of calculation are presented in the supplementary
information.[55] Henceforth, we assume that the impurity po-
tential has only large l = 0, 1 components and neglect higher
angular momentum channels.

First we will consider a single impurity on two different
phases of non-centro-symmetric SC [56–58]: s-wave (|∆s| �
|∆t|) and p-wave (|∆s| � |∆t|) pairing dominating regimes.
As we show below, impurity-bound-state spectra are qualita-
tively different in the two regimes.

s-wave dominating regime. For a SC for which s-wave sin-
glet pairing is dominant, ∆s � ∆t, each non-zero angu-
lar momentum component of the magnetic impurity potential,
Jn, creates a bound state [13]. In the presence of Rashba SOC,
for the case when the magnetic moment of the impurity is per-
pendicular to the 2D surface, S = ẑ, we find that the energy
levels of the impurity-induced bound states are given by the
following expressions:

|El=0,1|

∆s
=

γ2−J
2
0J

2
1±γ

3
2

�
(J2

0−J
2
1 )

2+(γ−1)(J0−J1)4

γ2(1+(J0−J1)2)+2γJ0J1 + J
2
0J

2
1

(6)
|El=−1|

∆s
=

1− J
2
1

1 + J
2
1

(7)

where γ = 1 + α̃2. For zero Rashba SOC H
1
imp and H

−1
imp

have the same structure and therefore the l = ±1 levels are
degenerate. However, as soon as we turn on the SOC, the
levels corresponding to different ls mix. This mixing is a new
qualitative feature of superconductors with SOC. We find that
the effect of the SOC is qualitatively different depending on
the orientation of S. For S perpendicular to the surface the
SOC causes mixing of the l = 0 and l = 1 states.

This hybridization causes a splitting of the l = 1,−1 states:
as α̃ grows the energy of both hybridized particle-like (hole-
like) states increases (decreases) whereas the energy of the
l = −1 state remains unchanged, as shown in Fig. 1 (a). For
the case in which S is in the plane of the 2D SC all the three
states, l = 0,−1, 1, hybridize, as shown in Fig. 1 (b). The l =
1,−1 states split and their energy grows (decreases) with α̃ if
they are particle-like (hole-like). The energy of the hybridized
l ≈ 0 states on the other hand in this case follows an oppo-
site trend and decreases (increases) with α̃ for the particle-like
(hole-like). This behavior can be qualitatively understood by
considering the perturbative regime α̃ � min{1, |J0 − J1|},
for which we can obtain analytic expressions for the energies
of the YSR states to lowest order in α̃ for an arbitrary direction

3

0 1 20

0.5

1

Α�

E
�� s

l�0

a�
l��1

0 1 20

0.5

1

Α�

E
�� s l��1

b�

l�0

�

� � � � � � � � � � � � � � � � �

�

�
� �

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
� � �

� � � � � � � � � � � � �
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � �

� � �
� � � �

� � � � �
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � �

� �

� �
�
�
�
�
�

�

�

�

�

�

�
� �

�

�

�
�

�

�
�
�
�
�
�
�
�
�
�
� � � �

�
� �

� �
� �

� �
� �

� �
� � �

� � �
�
�
�
�
�
�
�

�

�

�

�

� � � � � � � � � � � � � � � �
�
�
� �

� �
� �

� �
� �

� �
� � �

� �

�

�

�
�
��
��
���������������� �

�
�
�
��
�������������������������

��������
����
�
�
�
�
���
�
����
��
��
���
���
�����

�����������

�������
�
�
�
����
�
����

�

��
��
��
��
���
���
���
����
�����

����

�����������
�
������� ���������

���������
�������

�����

0 1 20

0.5

1

J1

E
�� s

U0�0
�U0�1

c�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

� � � � �
� �

� �
�
�
�
�
�
� � �

� �
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � �
�
�
�
�
� �

�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � �

� � �
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
� �

� � � �
� �

� �
� �

� �
� �

� � �
�

� � �
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � � � � � �

� �
� �

� �
� �

� �
� � �

� � �
�

�

�

�
�
��
��������������������

���
��
��
��
�������������������

����������������������
��
��
��
���
���
�����

�����������

���������
�
�
�
�
�
�
�������

��
��
���
���
���
����
�����

������

������������������������������������������
������

��

0 1 20

0.5

1

J1

E
�� s

U0�0
�U0�1

d�

FIG. 1. (a, b) Bound state spectrum for a magnetic impurity in an
s-wave SC as a function of Rashba SOC at J0 = 3/4, J±1 = 1/2,
U0 = U±1 = 0, S = ẑ (a) or x̂ (b). (c, d) Bound state spectrum as
a function of J1 at J0 = 3/4, α̃ = 1/2, U0 ∈ {0, 1}, U±1 = 0,
S = ẑ (c) or x̂ (d).

of S = (cosφ sin θ, sinφ sin θ, cos θ) [59]:

|El=0|
∆s

≈ 1−J2
0

1+J2
0

+
4α̃2J2

0J1(J0 cos
2 θ − J1)

(1 + J2
0 )

2(J2
0 − J2

1 )
(8)

|El=±1|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J2

1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )

2(J2
0 − J2

1 )

where F =
�
(J0 − J1)2 cos2 θ + J2

1 sin
4 θ. The expressions

above are valid as long as the hybridized states are not degen-
erate. To describe this situation we solved Eq. (4) numeri-
cally. Fig. 2 (a) shows an example of the evolution of the
spectrum of the YSR states with θ. We see that, for a given
set of values of J0, J1, α̃, there can be a value of θ for which
the energy levels of the different YSR states cross. In this sit-
uation, by varying the orientation of S, the fermion parity of
the impurity-bound ground state can be modified. This fea-
ture is useful to tune between topological and non-topological
regimes in the YSR-based Majorana proposals [18].

We now investigate the effect of the interplay between the
scalar and the magnetic potential. Without SOC, the effect of
Un �= 0 is to merely shift the energy of the l = n level [10].
However, the presence of the SOC causes the scalar potential
to qualitatively affect the spectrum of the YSR states created
by the magnetic potential (J0, J1 �= 0). In the perturbative
regime α � 1, for S � ẑ, we find that when U0 �= 0 the ener-
gies of the l = 0, 1 states are given by the following analytical
expressions:

|El=0|
∆s

≈ 1−J2
0+U2

0�
(1−J2

0+U2
0 )

2+4J2
0

(9)

+
4α̃2J2

0J1((1−J0J1)(1+J2
0+U2

0 )+2J0J1U2
0 )

((1−J0J1)(J0+J1)+J1U2
0 )((1−J2

0+U2
0 )

2+4J2
0 )

3
2

|El=1|
∆s

≈ 1−J2
1

1+J2
1

+
4α̃2J2

1 (J0(1−J0J1)+J1U2
0 )

(1+J2
1 )

2((1−J0J1)(J0+J1)+J1U2
0 )

(10)

whereas the energy of the l = −1 states remains unchanged
(see Eq. (7)). From these expressions we can see that the SOC
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FIG. 2. Bound state spectrum for magnetic impurity in a s-wave(a)
and p-wave(b) SC as a function of the direction of magnetic moment
at J0 = 1, J±1 = 1/3.

correction to the energy of the l = 1 level depends in a non-
trivial way on U0. Analogously, we found that the energy of
the l = 0 level qualitatively depends on U1. To go beyond the
perturbative regime we solved Eq. (4) with U0 �= 0 numeri-
cally. Fig. 1 (c) and (d) show the evolution of the YSR-states
spectrum as a function of J1 when both U0 and α̃ are not zero.
This figure clearly shows the qualitative effect that U0 has on
the YSR-spectrum in the presence of SOC: for S � ẑ the in-
terplay of SOC and scalar potential creates avoided crossings
between the particle-like l = 0 and the hole-like l = 1 lev-
els. For in-plane direction S there is an additional avoided
crossing between particle-like and hole-like l = 1 levels.

p-wave dominating regime. Superconductors with domi-
nantly p-wave pairing, ∆t > ∆s, have properties which are
more similar to unconventional superconductors. Triplet su-
perconductivity can be due to effective electron-electron in-
teractions (such as the ones originating from spin fluctuations)
that favor a Cooper instability in the p-wave channel, or SOC
itself, in which case ∆t depends on the strength of the SOC.
Because we are exclusively interested on the effect of the par-
ity of the order parameter on the YSR states in the presence
of SOC, we assume ∆t to be fixed and do not obtain it self-
consistently.

One can show that even in the presence of time-reversal
symmetry, scattering off non-magnetic impurities alone leads
to the formation of subgap bound states in the p-wave dom-
inated regime [51–53]. The presence of SOC modifies the
spectrum. In the limit of no magnetic potential, for α̃ � 1,
we find the following analytical expressions for the energy
levels of the bound states:

|El=0|
∆t

≈ U0U1 + 1�
(U2

0 + 1) (U2
1 + 1)

(11)

+
α̃2(U0 − U1)2((U0 + U1)2 + 1− U2

0U
2
1 )

2(1 + U0U1)((1 + U2
0 )(1 + U2

1 ))
3/2

|El=1|
∆t

≈ 1 + α̃2U2
1 /2�

1 + U2
1

(12)

For each angular momentum component of the scalar poten-
tial there is a charge impurity bound state. We see that there
can be a value of U1 for which the these energy levels cross.
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FIG. 1. (a, b) Bound state spectrum for a magnetic impurity in an
s-wave SC as a function of Rashba SOC at J0 = 3/4, J±1 = 1/2,
U0 = U±1 = 0, S = ẑ (a) or x̂ (b). (c, d) Bound state spectrum as
a function of J1 at J0 = 3/4, α̃ = 1/2, U0 ∈ {0, 1}, U±1 = 0,
S = ẑ (c) or x̂ (d).

of S = (cosφ sin θ, sinφ sin θ, cos θ) [59]:

|El=0|
∆s

≈ 1−J2
0

1+J2
0

+
4α̃2J2

0J1(J0 cos
2 θ − J1)

(1 + J2
0 )

2(J2
0 − J2

1 )
(8)

|El=±1|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J2

1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )

2(J2
0 − J2

1 )

where F =
�
(J0 − J1)2 cos2 θ + J2

1 sin
4 θ. The expressions

above are valid as long as the hybridized states are not degen-
erate. To describe this situation we solved Eq. (4) numeri-
cally. Fig. 2 (a) shows an example of the evolution of the
spectrum of the YSR states with θ. We see that, for a given
set of values of J0, J1, α̃, there can be a value of θ for which
the energy levels of the different YSR states cross. In this sit-
uation, by varying the orientation of S, the fermion parity of
the impurity-bound ground state can be modified. This fea-
ture is useful to tune between topological and non-topological
regimes in the YSR-based Majorana proposals [18].

We now investigate the effect of the interplay between the
scalar and the magnetic potential. Without SOC, the effect of
Un �= 0 is to merely shift the energy of the l = n level [10].
However, the presence of the SOC causes the scalar potential
to qualitatively affect the spectrum of the YSR states created
by the magnetic potential (J0, J1 �= 0). In the perturbative
regime α � 1, for S � ẑ, we find that when U0 �= 0 the ener-
gies of the l = 0, 1 states are given by the following analytical
expressions:

|El=0|
∆s

≈ 1−J2
0+U2

0�
(1−J2

0+U2
0 )

2+4J2
0

(9)

+
4α̃2J2

0J1((1−J0J1)(1+J2
0+U2

0 )+2J0J1U2
0 )

((1−J0J1)(J0+J1)+J1U2
0 )((1−J2

0+U2
0 )

2+4J2
0 )

3
2

|El=1|
∆s

≈ 1−J2
1

1+J2
1

+
4α̃2J2

1 (J0(1−J0J1)+J1U2
0 )

(1+J2
1 )

2((1−J0J1)(J0+J1)+J1U2
0 )

(10)

whereas the energy of the l = −1 states remains unchanged
(see Eq. (7)). From these expressions we can see that the SOC
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FIG. 2. Bound state spectrum for magnetic impurity in a s-wave(a)
and p-wave(b) SC as a function of the direction of magnetic moment
at J0 = 1, J±1 = 1/3.

correction to the energy of the l = 1 level depends in a non-
trivial way on U0. Analogously, we found that the energy of
the l = 0 level qualitatively depends on U1. To go beyond the
perturbative regime we solved Eq. (4) with U0 �= 0 numeri-
cally. Fig. 1 (c) and (d) show the evolution of the YSR-states
spectrum as a function of J1 when both U0 and α̃ are not zero.
This figure clearly shows the qualitative effect that U0 has on
the YSR-spectrum in the presence of SOC: for S � ẑ the in-
terplay of SOC and scalar potential creates avoided crossings
between the particle-like l = 0 and the hole-like l = 1 lev-
els. For in-plane direction S there is an additional avoided
crossing between particle-like and hole-like l = 1 levels.

p-wave dominating regime. Superconductors with domi-
nantly p-wave pairing, ∆t > ∆s, have properties which are
more similar to unconventional superconductors. Triplet su-
perconductivity can be due to effective electron-electron in-
teractions (such as the ones originating from spin fluctuations)
that favor a Cooper instability in the p-wave channel, or SOC
itself, in which case ∆t depends on the strength of the SOC.
Because we are exclusively interested on the effect of the par-
ity of the order parameter on the YSR states in the presence
of SOC, we assume ∆t to be fixed and do not obtain it self-
consistently.

One can show that even in the presence of time-reversal
symmetry, scattering off non-magnetic impurities alone leads
to the formation of subgap bound states in the p-wave dom-
inated regime [51–53]. The presence of SOC modifies the
spectrum. In the limit of no magnetic potential, for α̃ � 1,
we find the following analytical expressions for the energy
levels of the bound states:

|El=0|
∆t

≈ U0U1 + 1�
(U2

0 + 1) (U2
1 + 1)

(11)

+
α̃2(U0 − U1)2((U0 + U1)2 + 1− U2

0U
2
1 )

2(1 + U0U1)((1 + U2
0 )(1 + U2

1 ))
3/2

|El=1|
∆t

≈ 1 + α̃2U2
1 /2�

1 + U2
1

(12)

For each angular momentum component of the scalar poten-
tial there is a charge impurity bound state. We see that there
can be a value of U1 for which the these energy levels cross.

As expected SOC mixes 
states with different l. It 
also causes an interplay 

of U and J

Y. Kim, J. Zhang, ER, R. Lutchyn 
arXiv:1410.4558 (2014)
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Impurity-bound states in SCs with SOC: results

SOC plays a critical role to drive the “chain” of impurity states created by a 1D array of magnetic
impurities into a topological phase characterized by the presence of Majorana modes [30, 5, 32, 33].
For example, in the very recent experiment presented in Ref. [5] the magnetic impurities are placed
on the surface of lead that is known to have a very strong SOC. Due to the breaking of the inversion
symmetry induced by the presence of the surface, the effective Hamiltonian for the surface states
will contain a SOC term of the Rashba type. Only in the past few weeks the effect of such SOC term
on the spectrum of the states induced by the 1D array of impurities has started to be investigated
[24, 5, 31, 61, 32, 33, 62]. A lot more work needs to be done. In particular, our preliminary results
for the case of a single impurity [61] reveal that in the presence of SOC the presence of higher
angular momentum components of the impurity potential cannot be neglected. So far, no theory
for the spectrum created by a chain of magnetic impurities on SC with SOC, taking into account
the higher angular momentum components of the impurity potential has been developed yet. This
will be one of the outcomes of the proposed research.

3 Single impurity

θ!

"!

!"
#!

$!

%!

Figure 2: Sketch of the configuration consid-
ered for a single magnetic impurity, shown in
red, placed on a superconductor, shown in blue.

It is known that a magnetic impurity in an s-wave super-
conductor induces bound-states, i.e. states that whose en-
ergy is within the superconducting gap. These states are
commonly referred as Yu-Shiba-Rusinov (YSR) states [2–
4]. In the presence of SOC the spectrum of the YSR states
is expected to be modified for two reasons: (i) the SOC
modifies the spectrum of the quasiparticle (qp) states of
the host system; (ii) the presence of SOC can change the
relative strength of the superconducting pairing channels.

This part of the proposed research aims to find the
effect of SOC on the YSR spectrum, and on the proper-
ties, for example fermion parity, of the YSR states, in the
limit in which the magnetic moment S of the impurity
can be treated as a classical object. As stated in Sec. 1
this limit is directly relevant to many experimental condi-
tions and its understanding is necessary to develop more
sophisticated treatments, see Sec. 4.

3.1 Formalism

The Hamiltonian H for the system can be written as the sum of the Hamiltonian for the clean
superconductor HSC and the Hamiltonian for the magnetic impurity Himp: H = HSC +Himp. The
general expression for HSC is:

HSC =
�

p

ψ†
p [τz ⊗ (ξp + αlp · σ) + τx ⊗ (∆0(p)σ0 +∆1 · σ)]ψp (1)

where ψp is the Nambu spinor (cp↑, cp↓, c
†
−p↓,−c

†
−p↑)

T , with c
†
pσ (cpσ) the creation (annihilation)

operator for an electron with momentum p = (px, py) and spin σ, τj , σi are the Pauli matrices in
Nambu and spin space respectively, ξp = p

2
/2m− µ, with m the effective mass and µ the chemical

potential, is the energy of a quasiparticle with momentum p in the absence of SOC, αlp · σ is the
SOC term, α being the strength of the SOC, ∆0 (∆1) is the singlet (triplet) component of the

Enrico Rossi. Project Narrative–4

Dependence on θ

3

0 1 20

0.5

1

Α�

E
�� s

l�0

a�
l��1

0 1 20

0.5

1

Α�

E
�� s l��1

b�

l�0

�

� � � � � � � � � � � � � � � � �

�

�
� �

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
� � �

� � � � � � � � � � � � �
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � �

� � �
� � � �

� � � � �
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � �

� �

� �
�
�
�
�
�

�

�

�

�

�

�
� �

�

�

�
�

�

�
�
�
�
�
�
�
�
�
�
� � � �

�
� �

� �
� �

� �
� �

� �
� � �

� � �
�
�
�
�
�
�
�

�

�

�

�

� � � � � � � � � � � � � � � �
�
�
� �

� �
� �

� �
� �

� �
� � �

� �

�

�

�
�
��
��
���������������� �

�
�
�
��
�������������������������

��������
����
�
�
�
�
���
�
����
��
��
���
���
�����

�����������

�������
�
�
�
����
�
����

�

��
��
��
��
���
���
���
����
�����

����

�����������
�
������� ���������

���������
�������

�����

0 1 20

0.5

1

J1

E
�� s

U0�0
�U0�1

c�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�

� � � � �
� �

� �
�
�
�
�
�
� � �

� �
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � � � �
�
�
�
�
� �

�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � �

� � �
�
�
�
�
�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
� �

� � � �
� �

� �
� �

� �
� �

� � �
�

� � �
�
�
�
�
�
�
�
�
�
�
� � � � � � � � � � � � � � � � � � � �

� �
� �

� �
� �

� �
� � �

� � �
�

�

�

�
�
��
��������������������

���
��
��
��
�������������������

����������������������
��
��
��
���
���
�����

�����������

���������
�
�
�
�
�
�
�������

��
��
���
���
���
����
�����

������

������������������������������������������
������

��

0 1 20

0.5

1

J1

E
�� s

U0�0
�U0�1

d�

FIG. 1. (a, b) Bound state spectrum for a magnetic impurity in an
s-wave SC as a function of Rashba SOC at J0 = 3/4, J±1 = 1/2,
U0 = U±1 = 0, S = ẑ (a) or x̂ (b). (c, d) Bound state spectrum as
a function of J1 at J0 = 3/4, α̃ = 1/2, U0 ∈ {0, 1}, U±1 = 0,
S = ẑ (c) or x̂ (d).

of S = (cosφ sin θ, sinφ sin θ, cos θ) [59]:

|El=0|
∆s

≈ 1−J2
0

1+J2
0

+
4α̃2J2

0J1(J0 cos
2 θ − J1)

(1 + J2
0 )

2(J2
0 − J2

1 )
(8)

|El=±1|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J2

1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )

2(J2
0 − J2

1 )

where F =
�
(J0 − J1)2 cos2 θ + J2

1 sin
4 θ. The expressions

above are valid as long as the hybridized states are not degen-
erate. To describe this situation we solved Eq. (4) numeri-
cally. Fig. 2 (a) shows an example of the evolution of the
spectrum of the YSR states with θ. We see that, for a given
set of values of J0, J1, α̃, there can be a value of θ for which
the energy levels of the different YSR states cross. In this sit-
uation, by varying the orientation of S, the fermion parity of
the impurity-bound ground state can be modified. This fea-
ture is useful to tune between topological and non-topological
regimes in the YSR-based Majorana proposals [18].

We now investigate the effect of the interplay between the
scalar and the magnetic potential. Without SOC, the effect of
Un �= 0 is to merely shift the energy of the l = n level [10].
However, the presence of the SOC causes the scalar potential
to qualitatively affect the spectrum of the YSR states created
by the magnetic potential (J0, J1 �= 0). In the perturbative
regime α � 1, for S � ẑ, we find that when U0 �= 0 the ener-
gies of the l = 0, 1 states are given by the following analytical
expressions:

|El=0|
∆s

≈ 1−J2
0+U2

0�
(1−J2

0+U2
0 )

2+4J2
0

(9)

+
4α̃2J2

0J1((1−J0J1)(1+J2
0+U2

0 )+2J0J1U2
0 )

((1−J0J1)(J0+J1)+J1U2
0 )((1−J2

0+U2
0 )

2+4J2
0 )

3
2

|El=1|
∆s

≈ 1−J2
1

1+J2
1

+
4α̃2J2

1 (J0(1−J0J1)+J1U2
0 )

(1+J2
1 )

2((1−J0J1)(J0+J1)+J1U2
0 )

(10)

whereas the energy of the l = −1 states remains unchanged
(see Eq. (7)). From these expressions we can see that the SOC
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FIG. 2. Bound state spectrum for magnetic impurity in a s-wave(a)
and p-wave(b) SC as a function of the direction of magnetic moment
at J0 = 1, J±1 = 1/3.

correction to the energy of the l = 1 level depends in a non-
trivial way on U0. Analogously, we found that the energy of
the l = 0 level qualitatively depends on U1. To go beyond the
perturbative regime we solved Eq. (4) with U0 �= 0 numeri-
cally. Fig. 1 (c) and (d) show the evolution of the YSR-states
spectrum as a function of J1 when both U0 and α̃ are not zero.
This figure clearly shows the qualitative effect that U0 has on
the YSR-spectrum in the presence of SOC: for S � ẑ the in-
terplay of SOC and scalar potential creates avoided crossings
between the particle-like l = 0 and the hole-like l = 1 lev-
els. For in-plane direction S there is an additional avoided
crossing between particle-like and hole-like l = 1 levels.

p-wave dominating regime. Superconductors with domi-
nantly p-wave pairing, ∆t > ∆s, have properties which are
more similar to unconventional superconductors. Triplet su-
perconductivity can be due to effective electron-electron in-
teractions (such as the ones originating from spin fluctuations)
that favor a Cooper instability in the p-wave channel, or SOC
itself, in which case ∆t depends on the strength of the SOC.
Because we are exclusively interested on the effect of the par-
ity of the order parameter on the YSR states in the presence
of SOC, we assume ∆t to be fixed and do not obtain it self-
consistently.

One can show that even in the presence of time-reversal
symmetry, scattering off non-magnetic impurities alone leads
to the formation of subgap bound states in the p-wave dom-
inated regime [51–53]. The presence of SOC modifies the
spectrum. In the limit of no magnetic potential, for α̃ � 1,
we find the following analytical expressions for the energy
levels of the bound states:

|El=0|
∆t

≈ U0U1 + 1�
(U2

0 + 1) (U2
1 + 1)

(11)

+
α̃2(U0 − U1)2((U0 + U1)2 + 1− U2

0U
2
1 )

2(1 + U0U1)((1 + U2
0 )(1 + U2

1 ))
3/2

|El=1|
∆t

≈ 1 + α̃2U2
1 /2�

1 + U2
1

(12)

For each angular momentum component of the scalar poten-
tial there is a charge impurity bound state. We see that there
can be a value of U1 for which the these energy levels cross.

s-wave
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FIG. 1. (a, b) Bound state spectrum for a magnetic impurity in an
s-wave SC as a function of Rashba SOC at J0 = 3/4, J±1 = 1/2,
U0 = U±1 = 0, S = ẑ (a) or x̂ (b). (c, d) Bound state spectrum as
a function of J1 at J0 = 3/4, α̃ = 1/2, U0 ∈ {0, 1}, U±1 = 0,
S = ẑ (c) or x̂ (d).

of S = (cosφ sin θ, sinφ sin θ, cos θ) [59]:

|El=0|
∆s

≈ 1−J2
0

1+J2
0

+
4α̃2J2

0J1(J0 cos
2 θ − J1)

(1 + J2
0 )

2(J2
0 − J2

1 )
(8)

|El=±1|
∆s

≈ 1−J2
1

1+J2
1

+
2α̃2J0J2

1 (J0−J1 cos2 θ ± F (θ))

(1 + J2
1 )

2(J2
0 − J2

1 )

where F =
�
(J0 − J1)2 cos2 θ + J2

1 sin
4 θ. The expressions

above are valid as long as the hybridized states are not degen-
erate. To describe this situation we solved Eq. (4) numeri-
cally. Fig. 2 (a) shows an example of the evolution of the
spectrum of the YSR states with θ. We see that, for a given
set of values of J0, J1, α̃, there can be a value of θ for which
the energy levels of the different YSR states cross. In this sit-
uation, by varying the orientation of S, the fermion parity of
the impurity-bound ground state can be modified. This fea-
ture is useful to tune between topological and non-topological
regimes in the YSR-based Majorana proposals [18].

We now investigate the effect of the interplay between the
scalar and the magnetic potential. Without SOC, the effect of
Un �= 0 is to merely shift the energy of the l = n level [10].
However, the presence of the SOC causes the scalar potential
to qualitatively affect the spectrum of the YSR states created
by the magnetic potential (J0, J1 �= 0). In the perturbative
regime α � 1, for S � ẑ, we find that when U0 �= 0 the ener-
gies of the l = 0, 1 states are given by the following analytical
expressions:

|El=0|
∆s

≈ 1−J2
0+U2

0�
(1−J2

0+U2
0 )

2+4J2
0

(9)

+
4α̃2J2

0J1((1−J0J1)(1+J2
0+U2

0 )+2J0J1U2
0 )

((1−J0J1)(J0+J1)+J1U2
0 )((1−J2

0+U2
0 )

2+4J2
0 )

3
2

|El=1|
∆s

≈ 1−J2
1

1+J2
1

+
4α̃2J2

1 (J0(1−J0J1)+J1U2
0 )

(1+J2
1 )

2((1−J0J1)(J0+J1)+J1U2
0 )

(10)

whereas the energy of the l = −1 states remains unchanged
(see Eq. (7)). From these expressions we can see that the SOC
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FIG. 2. Bound state spectrum for magnetic impurity in a s-wave(a)
and p-wave(b) SC as a function of the direction of magnetic moment
at J0 = 1, J±1 = 1/3.

correction to the energy of the l = 1 level depends in a non-
trivial way on U0. Analogously, we found that the energy of
the l = 0 level qualitatively depends on U1. To go beyond the
perturbative regime we solved Eq. (4) with U0 �= 0 numeri-
cally. Fig. 1 (c) and (d) show the evolution of the YSR-states
spectrum as a function of J1 when both U0 and α̃ are not zero.
This figure clearly shows the qualitative effect that U0 has on
the YSR-spectrum in the presence of SOC: for S � ẑ the in-
terplay of SOC and scalar potential creates avoided crossings
between the particle-like l = 0 and the hole-like l = 1 lev-
els. For in-plane direction S there is an additional avoided
crossing between particle-like and hole-like l = 1 levels.

p-wave dominating regime. Superconductors with domi-
nantly p-wave pairing, ∆t > ∆s, have properties which are
more similar to unconventional superconductors. Triplet su-
perconductivity can be due to effective electron-electron in-
teractions (such as the ones originating from spin fluctuations)
that favor a Cooper instability in the p-wave channel, or SOC
itself, in which case ∆t depends on the strength of the SOC.
Because we are exclusively interested on the effect of the par-
ity of the order parameter on the YSR states in the presence
of SOC, we assume ∆t to be fixed and do not obtain it self-
consistently.

One can show that even in the presence of time-reversal
symmetry, scattering off non-magnetic impurities alone leads
to the formation of subgap bound states in the p-wave dom-
inated regime [51–53]. The presence of SOC modifies the
spectrum. In the limit of no magnetic potential, for α̃ � 1,
we find the following analytical expressions for the energy
levels of the bound states:

|El=0|
∆t

≈ U0U1 + 1�
(U2

0 + 1) (U2
1 + 1)

(11)

+
α̃2(U0 − U1)2((U0 + U1)2 + 1− U2

0U
2
1 )

2(1 + U0U1)((1 + U2
0 )(1 + U2

1 ))
3/2

|El=1|
∆t

≈ 1 + α̃2U2
1 /2�

1 + U2
1

(12)

For each angular momentum component of the scalar poten-
tial there is a charge impurity bound state. We see that there
can be a value of U1 for which the these energy levels cross.

p-wave

SOC induces strong θ dependence that can be used to 
tune the fermion parity of the bound state

Y. Kim, J. Zhang, ER, R. Lutchyn 
arXiv:1410.4558 (2014)



Conclusions

•  Obtained scaling of TK  and Kondo resistivity in 3D Dirac materials 

• Interplay of long-range disorder and Kondo effect in Dirac materials gives rise to a 
distribution of Kondo temperatures. Close to Dirac point:

P (3D) ∝ 1

TK [ln(TK)]5/2
P (2D) ∝ 1

TK [ln(TK)]3

• Low T tail of P(TK) induces NFL

χm ∝ 1

T | ln(T )|3/2 χm ∝ 1

T | ln(T )|2

• Study effect of SOC on impurity bound states in 2D superconductors

SOC strongly affects the bound states created by 
isolated impurities in superconductors

Can change parity of Shiba state

ρK(T = 0) ∝ nimp

n4/3
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